## 2015 IBC LATERAL ANALYSIS AND GRAVITY LOAD ENGINEERING FOR: LEVI HENDERSON PLAN: EDWARDS RESIDENCE SITE CRITERIA

| DESIGN<br>ROOF SNOW<br>LOAD | WIND SPEED<br>(V-ULT)                   | WIND                           | (IBC) SEISMIC<br>DESIGN<br>CATEGORY | SITE SOIL<br>CLASS.                | RISK<br>CATEGORY                   |                      |
|-----------------------------|-----------------------------------------|--------------------------------|-------------------------------------|------------------------------------|------------------------------------|----------------------|
| 25 PSF                      | 110 MPH                                 | В                              | D                                   | D                                  | II                                 |                      |
| SLOPE<br>PER<br>OWNER       | SPECIAL SITE<br>CONDITIONS<br>PER OWNER | GEOTECH<br>REPORT PER<br>OWNER | FROST<br>DEPTH                      | SEISMIC<br>SPECTRAL<br>RESPONSE S1 | SEISMIC<br>SPECTRAL<br>RESPONSE Ss | APPROX.<br>ELEVATION |
| <15%                        | NONE                                    | NONE                           | 12"                                 | 0.598g                             | 1.573g                             | 230 FT               |

VALUES OBTAINED FROM JURISDICTION, STATE, AND NATIONAL AGENCIES

John Hodge, P.E. 2615 Jahn Ave. N.W. Suite E-5 Gig Harbor, WA 98335 Phone: (253) 857-7055 Fax: (253) 857-7599

# PROJECT NUMBER 190390 DATE 07.11.19

Reviewed for code compliance with IRC 2015 Kitsap County Building Department PQuiriar@co.kitsap.wa.us 06/03/2020



SITE: 4457 SE SALMONBERRY RD PORT ORCHARD, WA 98366

TRUSS MANUFACTURER SHOP DRAWINGS PROVIDED FOR ENGINEERING REVIEW: NONE

SINGLE SITE ENGINEERING THIS ENGINEERING IS FOR THE SITE AND CONDITIONS LISTED ABOVE ONLY



COPYRIGHT ©2019 HODGE ENGINEERING, INC.

### TABLE OF CONTENTS

### Project and Site Information .....

- Engineering Methods Explanation (2015 IBC Lateral and Gravity Engineering Calculations Package For Plans Examiner)
- Wind Speed Determination Applied Technology Council
- Seismic<sup>1</sup> Spectral Response Applied Technology Council
- Satellite Image of Building Site and Surrounding Area
- Snow Load Calculation (with Normalized Ground Snow Load Chart if Over 30 psf)

Lateral Analysis.....

- Project Lateral Information Design Settings and Site Information
- Woodworks® Shearwall Lateral Analysis Layout and Uplift by Floor
- Design Summary Shear Wall Design and Hold Downs
- Shear Results for Wind Critical Response Summary
- Shear Results for Seismic Critical Response Summary
- Simpson Strong Wall Design Criteria and Anchorage Calculations (if specified)
- Plan Specific Lateral Items

### Gravity Load Analysis .....

- Forte® Job Summary Report List of Beams and Headers
- Member Reports Individual Beams and Headers
- Post Capacities Tables
- Plan Specific Gravity Items

Foundation

- 1500 PSF Reinforced Concrete Pad Calculations
- Continuous Concrete Footing with Stem Point Load Engineering
- Restrained Retaining Walls if Present
- Unrestrained Retaining Walls if Present
- Plan Specific Foundation Items

<sup>&</sup>lt;sup>1</sup> 2015 International Building Code (IBC)



2015 IBC Lateral and Gravity Engineering Calculations Package For Plans Examiner

This engineering calculations package contains the lateral and gravity load engineering as noted in the engineering scope.

All engineered load bearing structural members are specified on the full size engineering sheets. The enclosed engineering calculations document the engineering analysis. The engineering calculations are not required to be referenced onsite for construction. These calculations are to demonstrate to the Plans Examiner that the engineering was completed following the 2015 IBC. The cover sheet of the engineering specifies the engineering scope as lateral and gravity load engineering.

<u>LATERAL ENGINEERING</u>: Lateral engineering involves determining what the seismic and wind loads are according to ASCE 7-10. Applying these loads to the structure, and determining the design of the lateral structural elements to resist these loads. The structural elements are sheathing, nailing, holdowns, and the connections between loaded members and shear resisting elements.

Lateral load modeling was completed with Wood Works Design Office 10 (<u>www.woodworks-software.com</u> 800-844-1275). Wood Works was developed in conjunction with the American Forest & Paper Association. The AF&PA is the same professional organization that produces the National Design Specification (NDS) for Wood Construction, the Allowable Stress Design (ASD) manual for engineered wood construction, Wood Frame Construction Manual (WFCM) for one-and two-family dwellings, and the Load and Resistance Factor Design (LFRD) manual for engineered wood construction. The AF&PA "wrote the manuals" all engineers use.

<u>Seismic</u>: Seismic load engineering follows the ASCE 7-10 12.8 equivalent lateral force procedure. Per ASCE 7 the analysis consists of the application of equivalent static lateral forces to a linear mathematical model of the structure. The total forces applied in each direction are the total base shear. Refer to ASCE 7-10 12.8 for a detailed description of this procedure. The engineering calculations include a USGS determination of the seismic spectral response accelerations. These numbers, S<sub>1</sub> and Ss, are used in the lateral model to determine seismic loading to the shearwalls. Woodworks Design Office was used to make the linear mathematical model specified by ASCE 7-10 section 12.8.

<u>Wind</u>: Wind load engineering follows the ASCE 7-10 Directional method for all heights. The wind loading is determined from the wind exposure and wind speed. This loading is applied to surfaces of the structure as modeled. Total loadings for each shear line, wall line, and full height shearwall are determined. Required shear strengths for each shearwall are calculated then sheathing and nailing patterns are chosen to resist design loads. Holdowns are applied where the nailing of the OSB sheathing to the mudsill or lower floor is not adequate to resist shear panel overturning.

<u>GRAVITY LOAD ENGINEERING:</u> Gravity loads from snow, structure, occupants, etc. meeting the requirements of the 2015 IBC have been traced through the structure. Refer to the legend on the engineering sheets showing how the point and line loads are depicted. All loads are supported and traced through the structure. Load supporting members have been numbered for reference back to the engineering calculations. Loads to the foundation or soil have reinforced footings specified where required.

## **Edwards Residence**

Hodge Project Number: #190390 Site Address: 4457 SE Salmonberry Rd Port Orchard, WA 98366 Kitsap County Jurisdiction: Kitsap County

Approximate Elevation: ~230 FT

-Creek View CHSE

5000 1.500 FEET.

SE Melton Ro

ong Lake Rd-SE

457 SE Salmonberry Rd

SE-Crabb-Ct

SE Sleeply Hollow Ct approx. 1,500 FEE

apanning

engineering

Morning

2000 ft

N

© 2018 Google

Google Earth

en Rd S

# ATC Hazards by Location

### **Search Information**

| Coordinates: | 47.512821, -122.593403   |
|--------------|--------------------------|
| Elevation:   | 227 ft                   |
| Timestamp:   | 2019-06-14T15:02:44.135Z |
| Hazard Type: | Wind                     |



### ASCE 7-16

ASCE 7-10

### ASCE 7-05

ASCE 7-05 Wind Speed

85 mph

| MRI 10-Year       | 67 mph  | MRI 10-Year          | 72 mph  |
|-------------------|---------|----------------------|---------|
| MRI 25-Year       | 73 mph  | MRI 25-Year          | 79 mph  |
| MRI 50-Year       | 78 mph  | MRI 50-Year          | 85 mph  |
| MRI 100-Year      | 83 mph  | MRI 100-Year         | 91 mph  |
| Risk Category I   | 92 mph  | Risk Category I 1    | 100 mph |
| Risk Category II  | 98 mph  | Risk Category II     | 110 mph |
| Risk Category III | 104 mph | Risk Category III-IV | 115 mph |
| Risk Category IV  | 108 mph |                      |         |

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

### Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the



### **Search Information**

| Coordinates:           | 47.512821, -122.593403   |
|------------------------|--------------------------|
| Elevation:             | 227 ft                   |
| Timestamp:             | 2019-06-14T15:03:23.666Z |
| Hazard Type:           | Seismic                  |
| Reference<br>Document: | ASCE7-10                 |
| Risk Category:         | II                       |
| Site Class:            | D                        |



### **MCER Horizontal Response Spectrum**

**Design Horizontal Response Spectrum** 



### **Basic Parameters**

| Name            | Value | Description                                  |
|-----------------|-------|----------------------------------------------|
| S <sub>S</sub>  | 1.573 | MCE <sub>R</sub> ground motion (period=0.2s) |
| S <sub>1</sub>  | 0.598 | MCE <sub>R</sub> ground motion (period=1.0s) |
| S <sub>MS</sub> | 1.573 | Site-modified spectral acceleration value    |
| S <sub>M1</sub> | 0.897 | Site-modified spectral acceleration value    |
| S <sub>DS</sub> | 1.048 | Numeric seismic design value at 0.2s SA      |
| S <sub>D1</sub> | 0.598 | Numeric seismic design value at 1.0s SA      |

### Additional Information

| Name            | Value | Description                       |
|-----------------|-------|-----------------------------------|
| SDC             | D     | Seismic design category           |
| Fa              | 1     | Site amplification factor at 0.2s |
| Fv              | 1.5   | Site amplification factor at 1.0s |
| CR <sub>S</sub> | 0.941 | Coefficient of risk (0.2s)        |

### 14.04.535 Design criteria.

IRC Table R301.2(1) is amended by filling in the blanks of the table to reflect specific Kitsap County criteria as follows:

| Ground Snow Load = 25 <sup>a</sup> .   |
|----------------------------------------|
| Wind Speed = Ultimate. 110             |
| Wind Debris = No                       |
| Special Wind Region = No               |
| Seismic Design Category = D2           |
| Weathering = Moderate                  |
| Frost Line Depth = 12"                 |
| Termite = Slight to Moderate           |
| Decay = Moderate to Severe             |
| Winter Design Temp = 26                |
| Ice Barrier Underlayment Required = No |
| Flood Hazards = (a) 1980, (b) 1980     |
| Air Freezing Index = 148               |
| Mean Annual Temp = 51.4                |
| Topographic Effects = Yes              |
|                                        |

a. Roof live load may not be reduced to less than 25#psf.

(Ord. 552 (2018) § 8, 2018: Ord. 464 (2010) § 12, 2010: Ord. 391 (2007) § 12, 2007: Ord. 323 (2004) § 53, 2004)



## **Snow Loading Calculation**

- Site: 4457 SE Salmonberry Rd, Port Orchard, WA 98366
- Plan: Edwards Residence
- Job: 190390

Three resources for determining snow load:

- 1. Snow Load Analysis for Washington; 2<sup>nd</sup> Edition by the Structural Engineers Association of Washington (SEAW). "This edition provides a large color map for each half of the state, with normalized ground snow load isolines and elevation contours to help readily determine the ground snow load anywhere in the state".
- 2. WABO/SEAW White Paper #8 "Guidelines for Determining Snow Loads in Washington State" available on <u>www.seaw.org/publications</u>
- 3. ASCE 7-10 Chapter 7 Snow Loads

Ground Snow Load pg:

(ASCE 7-10 7.2 Extreme value statistical analysis using 2% annual probability of being exceeded) Normalized ground snow load (NGSL) = 0.050

Lot Elevation = 230 ft. from Google Earth

- 1. Ground snow load = NGSL x elevation = 0.050 \* 230 = 12 psf = pg
- SEAW Snow Load Analysis for Washington Appendix A = Port Orchard 15 PSF (@140 FT)

Roof Snow Load pf:

ASCE 7-10 7.3 Flat roof snow load  $p_f = 0.7C_eC_t lp_g$ ASCE 7-10 7.3.1  $C_e$  is the exposure factor = 1.0 for partially exposed structure (table 7.2) ASCE 7-10 7.3.2  $C_t$  is the thermal factor = 1.1 for heated residences (table 7.3) ASCE 7-10 7.3.3 I is the importance factor = 1.0 for residences (table 1.5-2) ASCE 7-10 7.4 Sloped roof snow loads - no roof slope reduction Cs taken ASCE 7-10 7.6 Trussed roof or slope exceeding 7:12 – no unbalanced snow loading

 $p_f = 0.7C_eC_t Ip_g$ 

Kitsap County minimum roof snow load 25 psf. "Snow load to be approved by the authority having jurisdiction..." ASCE 7-10 7.2

Hodge Engineering, Inc. John E. Hodge P. E. 2615 Jahn Ave NW Ste. E5 Gig Harbor, WA 98335 (253) 857-7055 Fax (253) 857-7599

WoodWorks® Shearwalls 11.1

LATERAL ANALYSIS - 190390.wsw

Jun. 24, 2019 09:29:04

### **Project Information**

| COMPANY AND PROJECT INFORMATION |         |  |
|---------------------------------|---------|--|
| Company                         | Project |  |
| Hodge Engineering               |         |  |
| 2615 Jahn Ave NW Suite E-5      |         |  |
| Gig Harbor, WA 98335            |         |  |

#### **DESIGN SETTINGS**

| Design Code<br>IBC 2015/AWC SDPWS 2015 |                                                                        | ASCE 7-10 Di:              | Wind Standard<br>ASCE 7-10 Directional (All heights) |         |                 | Seismic Standard<br>ASCE 7-10 |  |  |
|----------------------------------------|------------------------------------------------------------------------|----------------------------|------------------------------------------------------|---------|-----------------|-------------------------------|--|--|
|                                        | Load C                                                                 | Combinations               |                                                      | Build   | ling Code Cap   | acity Modification            |  |  |
| For Design (ASD)                       | For Design (ASD) For Deflection (Strength)                             |                            |                                                      | w       | ind             | Seismic                       |  |  |
| 0.70 Seismic                           | smic 1.00 Seismic                                                      |                            |                                                      | 1.      | . 0 0           | 1.00                          |  |  |
| 0.60 Wind                              |                                                                        | 1.00 Wind                  |                                                      |         |                 |                               |  |  |
|                                        | Service Condition                                                      | ons and Load Duration      |                                                      |         | Max Shearwa     | all Offset [ft]               |  |  |
| Duration                               | Temperature                                                            | Moistu                     | ure Content                                          | P       | lan             | Elevation                     |  |  |
| Factor                                 | Range                                                                  | Fabrication                | Service                                              | (within | n story)        | (between stories)             |  |  |
| 1.60                                   | T<=100F                                                                | 19% <=19%                  | 10% <=19%                                            | 4.      | 00              | -                             |  |  |
|                                        |                                                                        | Maximum                    | n Height-to-width R                                  | atio    |                 |                               |  |  |
| Wood                                   | panels                                                                 | Fiberboard                 | Lumber                                               | ,       | Gypsum          |                               |  |  |
| Wind                                   | Seismic                                                                |                            | Wind                                                 | Seismic | Blocked         | Unblocked                     |  |  |
| 3.5                                    | 3.5                                                                    | -                          | -                                                    | -       | -               | -                             |  |  |
| lgn                                    | ore non-wood-panel                                                     | shear resistance contri    | bution                                               |         | Collector force | es based on                   |  |  |
|                                        | Wind                                                                   | Se                         | eismic                                               | Hold-d  | owns App        | olied loads                   |  |  |
| :                                      | Never                                                                  | N                          | ever                                                 | Drag s  | truts App       | plied loads                   |  |  |
|                                        | She                                                                    | earwall Relative Rigidity  | /: Wall capacity                                     |         |                 |                               |  |  |
|                                        | Perfora                                                                | ted shearwall Co facto     | r: SDPWS Equatio                                     | n 4.3-5 |                 |                               |  |  |
| Non-identica                           | Non-identical materials and construction on the shearline: Not allowed |                            |                                                      |         |                 |                               |  |  |
|                                        | Deflection Equation: 4-term from SDPWS C4.3.2-2                        |                            |                                                      |         |                 |                               |  |  |
|                                        | Dr                                                                     | rift limit for wind design | 1 / 500 story                                        | height  |                 |                               |  |  |

#### SITE INFORMATION

| ASCE 7-10 Dire            | Wind                 | aights)     | ASCE 7-10 12 8                      | Seismic                                        | Procedure |  |  |
|---------------------------|----------------------|-------------|-------------------------------------|------------------------------------------------|-----------|--|--|
| ABCE / IO DIIC            |                      |             | ADCE / 10 12.0                      |                                                | rioccuure |  |  |
| Design Wind Speed         | 110 mph              |             | Risk Category                       | Risk Category         Category II - All others |           |  |  |
| Serviceability Wind Speed | 85 mph               |             | Structure Type                      | Regular                                        |           |  |  |
| Exposure                  | Exposure B           |             | Building System                     | Bearing Wall                                   |           |  |  |
| Enclosure                 | Enclosed             |             | Design Category                     | D                                              |           |  |  |
| Min Wind Loads: Walls     | 16 psf               |             | Site Class                          | D                                              |           |  |  |
| Roofs 8 psf               |                      |             | Spectral Response Acceleration      |                                                |           |  |  |
| Topograp                  | hic Information [ft] |             | <b>S1:</b> 0.598g <b>Ss:</b> 1.573g |                                                |           |  |  |
| Shape                     | Height               | Length      | Fundamental Period                  | E-W                                            | N-S       |  |  |
| _                         | -                    | -           | T Used                              | 0.130s                                         | 0.130s    |  |  |
| Site Location: -          |                      |             | Approximate Ta                      | 0.130s                                         | 0.130s    |  |  |
| Elev: 230ft Avg Ai        | r density: 0.07      | 76 lb/cu ft | Maximum T                           | 0.182s                                         | 0.182s    |  |  |
| Rigid buildi              | ng - Static ana      | lysis       | Response Factor R                   | 6.50                                           | 6.50      |  |  |
| Case 2                    | E-W loads            | N-S loads   | <b>Fa:</b> 1.00 <b>Fv:</b> 1.50     |                                                |           |  |  |
| Eccentricity (%)          | 15                   | 15          |                                     |                                                |           |  |  |
| Loaded at                 | 75%                  |             |                                     |                                                |           |  |  |



SEISMIC DESIGN SHEAR LINE LOADS AND OVERTURNING VALUES

- Factored shearline force (lbs)
- Factored holddown force (lbs)
- C Compression force exists

Vertical element required

Unfactored applied shear load (plf)

 $\otimes$ - $\otimes$  Unfactored dead load (plf,lbs)

Applied point load or discontinuous shearline force (lbs)

Loads: Seismic (Qe); Forces: 0.7E + 0.6D; E = pQe + 0.2 Sds D; p(NS) = 1.0; p(EW) = 1.0; Sds = 1.05; Flexible distribution



WIND DESIGN SHEAR LINE LOADS AND OVERTURNING VALUES

- Factored shearline force (lbs) Factored holddown force (lbs)
- C Compression force exists
- Vertical element required
- ⊙- ⊙ Unfactored uplift wind load (plf,lbs)
- Applied point load or discontinuous shearline force (lbs)

Unfactored applied shear load (plf)

⊗-⊗ Unfactored dead load (plf,lbs)

Loads: Directional Case 1 Wind (W); Forces: 0.6W + 0.6D; Flexible distribution

## WoodWorks® Shearwalls

**Structural Data** 

### STORY INFORMATION

|            |           |               |             | Hold-down         |             |  |  |
|------------|-----------|---------------|-------------|-------------------|-------------|--|--|
|            | Story     | Floor/Ceiling | Wall        | Length subject to | Bolt        |  |  |
|            | Elev [ft] | Depth [in]    | Height [ft] | shrinkage [in]    | length [in] |  |  |
| Ceiling    | 12.00     | 0.0           |             |                   |             |  |  |
| Level 1    | 3.00      | 10.0          | 9.00        | 14.0              | 14.5        |  |  |
| Foundation | 2.00      |               |             |                   |             |  |  |

#### **BLOCK and ROOF INFORMATION**

|                          |                 | Roof Panels |       |        |       |               |
|--------------------------|-----------------|-------------|-------|--------|-------|---------------|
|                          | Dimensions [ft] |             | Face  | Туре   | Slope | Overhang [ft] |
| Block 1                  | 1 Story         | E-W Ridge   |       |        |       |               |
| Location X,Y =           | 0.00            | 0.00        | North | Side   | 26.6  | 1.00          |
| Extent X,Y =             | 36.00           | 25.00       | South | Side   | 26.6  | 1.00          |
| Ridge Y Location, Offset | 12.50           | 0.00        | East  | Hip    | 26.6  | 1.00          |
| Ridge Elevation, Height  | 18.00           | 6.50        | West  | Hip    | 26.6  | 1.00          |
| Block 2                  | 1 Story         | N-S Ridge   |       |        |       |               |
| Location X,Y =           | 8.00            | 25.00       | North | Gable  | 90.0  | 1.00          |
| Extent X,Y =             | 20.00           | 10.00       | South | Joined | 153.4 | 1.00          |
| Ridge X Location, Offset | 18.00           | 0.00        | East  | Side   | 26.6  | 1.00          |
| Ridge Elevation, Height  | 17.00           | 5.00        | West  | Side   | 26.6  | 1.00          |
| Block 3                  | 1 Story         | N-S Ridge   |       |        |       |               |
| Location X,Y =           | 16.00           | -4.00       | North | Joined | 153.4 | 1.00          |
| Extent X,Y =             | 8.00            | 4.00        | South | Gable  | 90.0  | 1.00          |
| Ridge X Location, Offset | 19.50           | 0.00        | East  | Side   | 26.6  | 1.00          |
| Ridge Elevation, Height  | 14.00           | 2.00        | West  | Side   | 26.6  | 1.00          |

#### SHEATHING MATERIALS by WALL GROUP

|     |      |               |       | Sheathir | ng |     |      |        |      | Fa   | stene | rs |    |    | Apply |
|-----|------|---------------|-------|----------|----|-----|------|--------|------|------|-------|----|----|----|-------|
| Grp | Surf | Material      | Ratng | Thick    | GU | Ply | Or   | Gvtv   | Size | Туре | Df    | Eg | Fd | Bk | Notes |
| _   |      |               |       | in       | in |     |      | lbs/in |      |      |       | in | in |    |       |
| 1   | Ext  | Struct Sh OSB | 24/16 | 7/16     | -  | 3   | Vert | 83500  | 8d   | Nail | Ν     | 6  | 12 | Y  | 1,3   |

Legend:

Grp – Wall Design Group number, used to reference wall in other tables

Surf - Exterior or interior surface when applied to exterior wall

Ratng – Span rating, see SDPWS Table C4.2.2.2C

Thick – Nominal panel thickness

GU - Gypsum underlay thickness

Ply - Number of plies (or layers) in construction of plywood sheets

Or – Orientation of longer dimension of sheathing panels

Gvtv - Shear stiffness in Ib/in. of depth from SDPWS Tables C4.2.2A-B

Type – Fastener type from SDPWS Tables 4.3A-D: Nail – common wire nail for structural panels and lumber, cooler or gypsum wallboard nail for GWB, plasterboard nail for gypsum lath, galvanised nail for gypsum sheathing; Box - box nail; Casing – casing nail; Roof – roofing nail; Screw – drywall screw

Size - Common, box, and casing nails: refer to SDPWS Table A1 (casing sizes = box sizes).

Gauges: 11 ga =  $0.120^{\circ} \times 1-3/4^{\circ}$  (gypsum sheathing, 25/32" fiberboard ),  $1-1/2^{\circ}$  (lath & plaster,  $1/2^{\circ}$  fiberboard); 13 ga plasterboard =  $0.92^{\circ} \times 1-1/8^{\circ}$ .

Cooler or gypsum wallboard nail:  $5d = .086" \times 1-5/8"$ ;  $6d = .092" \times 1-7/8"$ ;  $8d = .113" \times 2-3/8"$ ; 6/8d = 6d base ply, 8d face ply for 2-ply GWB. Drywall screws: No. 6, 1-1/4" long.

5/8" gypsum sheathing can also use 6d cooler or GWB nail

Df – Deformed nails (threaded or spiral), with increased withdrawal capacity

Eg – Panel edge fastener spacing

Fd - Field spacing interior to panels

Bk – Sheathing is nailed to blocking at all panel edges; Y(es) or N(o)

Apply Notes - Notes below table legend which apply to sheathing side

Notes:

1. Capacity has been reduced for framing specific gravity according to SDPWS T4.3A Note 3.

3. Shear capacity for current design has been increased to the value for 15/32" sheathing with same nailing because stud spacing is 16" max. or panel orientation is horizontal. See SDPWS T4.3A Note 2.

#### FRAMING MATERIALS and STANDARD WALL by WALL GROUP

| Wall | Species | Grade | b    | d    | Spcg | SG   | F     | Standard Wall |
|------|---------|-------|------|------|------|------|-------|---------------|
| Grp  | opeoles | Chade | in   | in   | in   | 00   | psi^6 |               |
| 1    | Hem-Fir | Stud  | 1.50 | 5.50 | 16   | 0.43 | 1.20  |               |

Legend:

Wall Grp – Wall Design Group

b – Stud breadth (thickness)

d – Stud depth (width)

Spcg - Maximum on-centre spacing of studs for design, actual spacing may be less.

SG – Specific gravity

E – Modulus of elasticity

Standard Wall - Standard wall designed as group.

Notes:

Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs.

#### SHEARLINE, WALL and OPENING DIMENSIONS

| North-south | Туре | Wall  | Location | Exter | nt [ft] | Length | FHS   | Aspect | Height |
|-------------|------|-------|----------|-------|---------|--------|-------|--------|--------|
| Shearlines  |      | Group | X [ft]   | Start | End     | [ft]   | [ft]  | Ratio  | [ft]   |
| Line 1      |      |       |          |       |         |        |       |        |        |
| Level 1     |      |       |          |       |         |        |       |        |        |
| Line 1      |      | 1     | 0.00     | 0.00  | 25.00   | 25.00  | 22.00 | -      | 9.00   |
| Wall 1-1    | Seg  | 1     | 0.00     | 0.00  | 25.00   | 25.00  | 22.00 | -      | -      |
| Segment 1   | -    | -     | -        | 0.00  | 12.50   | 12.50  | -     | 0.72   | -      |
| Opening 1   |      | -     | -        | 12.50 | 15.50   | 3.00   | -     | -      | 5.00   |
| Segment 2   |      | -     | -        | 15.50 | 25.00   | 9.50   | -     | 0.95   | -      |
| Line 2      |      |       |          |       |         |        |       |        |        |
| Level 1     |      |       |          |       |         |        |       |        |        |
| Line 2      |      | 1     | 36.00    | 0.00  | 25.00   | 25.00  | 23.00 | -      | 9.00   |
| Wall 2-1    | Seg  | 1     | 36.00    | 0.00  | 25.00   | 25.00  | 23.00 | -      | -      |
| Segment 1   |      | -     | -        | 0.00  | 19.00   | 19.00  | -     | 0.47   | -      |
| Opening 1   |      | -     | -        | 19.00 | 21.00   | 2.00   | -     | -      | 5.00   |
| Segment 2   |      | -     | -        | 21.00 | 25.00   | 4.00   | -     | 2.25   | -      |
|             |      |       |          |       |         |        |       |        |        |
| East-west   | Туре | Wall  | Location | Exter | nt [ft] | Length | FHS   | Aspect | Height |
| Shearlines  |      | Group | Y [ft]   | Start | End     | [ft]   | [ft]  | Ratio  | [ft]   |
| Line A      |      |       |          |       |         |        |       |        |        |
| Level 1     |      |       |          |       |         |        |       |        |        |
| Line A      |      | 1     | 0.00     | 0.00  | 36.00   | 36.00  | 18.50 | -      | 9.00   |
| Wall A-1    | Seg  | 1     | 0.00     | 0.00  | 36.00   | 36.00  | 18.50 | -      | -      |
| Segment 1   |      | -     | -        | 0.00  | 5.00    | 5.00   | -     | 1.80   | -      |
| Opening 1   |      | -     | -        | 5.00  | 13.00   | 8.00   | -     | -      | 5.00   |
| Segment 2   |      | -     | -        | 13.00 | 18.00   | 5.00   | -     | 1.80   | -      |
| Opening 2   |      | -     | -        | 18.00 | 21.50   | 3.50   | -     | -      | 5.00   |
| Segment 3   |      | -     | -        | 21.50 | 26.00   | 4.50   | -     | 2.00   | -      |
| Opening 3   |      | -     | -        | 26.00 | 32.00   | 6.00   | -     | -      | 5.00   |
| Segment 4   |      | -     | -        | 32.00 | 36.00   | 4.00   | -     | 2.25   | -      |
| Line B      |      |       |          |       |         |        |       |        |        |
| Level 1     |      |       |          |       |         |        |       |        |        |
| Line B      |      | 1     | 25.00    | 0.00  | 36.00   | 36.00  | 26.00 | -      | 9.00   |
| Wall B-1    | Seq  | 1     | 25.00    | 0.00  | 36.00   | 36.00  | 26.00 | -      | _      |
| Segment 1   |      | -     | _        | 0.00  | 3.50    | 3.50   | _     | 2.57   | _      |
| Opening 1   |      | -     | -        | 3.50  | 5.50    | 2.00   | -     | _      | 5.00   |
| Segment 2   |      | -     | -        | 5.50  | 9.17    | 3.67   | -     | 2.45   | _      |
| Opening 2   |      | -     | -        | 9.17  | 12.17   | 3.00   | -     | -      | 5.00   |
| Segment 3   |      | -     | -        | 12.17 | 18.50   | 6.33   | -     | 1.42   | _      |
| Opening 3   |      | -     | -        | 18.50 | 21.50   | 3.00   | -     | _      | 5.00   |
| Segment 4   |      | -     | -        | 21.50 | 25.25   | 3.75   | -     | 2.40   | _      |
| Opening 4   |      | -     | -        | 25.25 | 27.25   | 2.00   | -     | _      | 5.00   |
| Segment 5   |      | -     | -        | 27.25 | 36.00   | 8.75   | -     | 1.03   | _      |
|             |      |       |          |       |         |        |       |        |        |

Legend:

Type - Seg = segmented, Prf = perforated, NSW = non-shearwall

Location - Dimension perpendicular to wall

FHS - Length of full-height sheathing used to resist shear force. For perforated walls, it is based on the factored segments Li defined in SDPWS 4.3.4.3

Aspect Ratio – Ratio of wall height to segment length (h/bs)

Wall Group - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall

### **Design Summary**

#### SHEARWALL DESIGN

**Wind Shear Loads, Flexible Diaphragm** All shearwalls have sufficient design capacity.

#### Wind Shear Loads, Rigid Diaphragm

All shearwalls have sufficient design capacity.

**Components and Cladding Wind Loads, Out-of-plane Sheathing** All shearwalls have sufficient design capacity.

### Components and Cladding Wind Loads, Nail Withdrawal

All shearwalls have sufficient design capacity.

#### Seismic Loads, Flexible Diaphragm

All shearwalls have sufficient design capacity.

#### Seismic Loads, Rigid Diaphragm

All shearwalls have sufficient design capacity.

#### HOLDDOWN DESIGN

#### Wind Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

#### Wind Loads, Rigid Diaphragm

All hold-downs have sufficient design capacity.

### Seismic Loads, Flexible Diaphragm

All hold-downs have sufficient design capacity.

#### Seismic Loads, Rigid Diaphragm

All hold-downs have sufficient design capacity.

This Design Summary does not include failures that occur due to excessive story drift from ASCE 7 CC1.2 (wind) or 12.12 (seismic). Refer to Story Drift table in this report to verify this design criterion. Refer to the Deflection table for possible issues regarding fastener slippage (SDPWS Table C4.2.2D).

### Flexible Diaphragm Wind Design ASCE 7 Directional (All Heights) Loads

SHEAR RESULTS

| N-S        | W  | For   | ASD S | hear Force | e [plf] | Asp | -Cub |     | Allo | wable | Shea | r [plf] |         | Resp. |
|------------|----|-------|-------|------------|---------|-----|------|-----|------|-------|------|---------|---------|-------|
| Shearlines | Gp | Dir   | v     | vmax       | V [lbs] | Int | Ext  | Int | Ext  | Со    | С    | Cmb     | V [lbs] | Ratio |
| Line 1     |    |       |       |            |         |     |      |     |      |       |      |         |         |       |
| Level 1    |    |       |       |            |         |     |      |     |      |       |      |         |         |       |
| Ln1, Lev1  | -  | S->N  | -     | -          | 1414    | -   | -    | -   | 339  | -     |      | -       | 7447    | -     |
|            | -  | N->S  | -     | -          | 1464    | -   | -    | -   | 339  | -     |      | -       | 7447    | -     |
| Wall 1-1   | 1  | S->N  | -     | -          | 1414    | -   | 1.0  | -   | 339  | -     |      | -       | 7447    | -     |
|            | 1  | N->S  | -     | -          | 1464    | -   | 1.0  | -   | 339  | -     |      | -       | 7447    | -     |
| Seg. 1     | -  | S->N  | 64.3  | -          | 804     | -   | 1.0  | -   | 339  | -     |      | 339     | 4232    | 0.19  |
|            | -  | N->S  | 66.5  | -          | 832     | -   | 1.0  | -   | 339  | -     |      | 339     | 4232    | 0.20  |
| Seg. 2     | -  | S->N  | 64.3  | -          | 611     | -   | 1.0  | -   | 339  | -     |      | 339     | 3216    | 0.19  |
|            | -  | N->S  | 66.5  | -          | 632     | -   | 1.0  | -   | 339  | -     |      | 339     | 3216    | 0.20  |
| Line 2     |    |       |       |            |         |     |      |     |      |       |      |         |         |       |
| Ln2, Lev1  | -  | S->N  | -     | -          | 1419    | -   | -    | -   | 339  | -     |      | -       | 7636    | -     |
|            | -  | N->S  | -     | -          | 1467    | -   | -    | -   | 339  | -     |      | -       | 7636    | -     |
| Wall 2-1   | 1  | S->N  | -     | -          | 1419    | -   | 1.0  | -   | 339  | -     |      | -       | 7636    | -     |
|            | 1  | N->S  | -     | -          | 1467    | -   | 1.0  | -   | 339  | -     |      | -       | 7636    | -     |
| Seg. 1     | -  | S->N  | 62.9  | -          | 1195    | -   | 1.0  | -   | 339  | -     |      | 339     | 6432    | 0.19  |
|            | -  | N->S  | 65.0  | -          | 1235    | -   | 1.0  | -   | 339  | -     |      | 339     | 6432    | 0.19  |
| Seg. 2     | -  | S->N  | 55.9  | -          | 224     | -   | .89  | -   | 301  | -     |      | 301     | 1204    | 0.19  |
|            | -  | N->S  | 57.8  | -          | 231     | -   | .89  | -   | 301  | -     |      | 301     | 1204    | 0.19  |
|            |    | _     |       |            |         |     |      |     |      |       |      |         |         |       |
| E-W        | W  | For   | ASD S | hear Force |         | Asp | -Cub |     |      | wable | Shea | r [plt] |         | Resp. |
| Shearlines | Gp | Dir   | v     | vmax       | V [lbs] | Int | Ext  | Int | Ext  | Co    | C    | Cmb     | V [lbs] | Ratio |
| Line A     |    |       |       |            |         |     |      |     |      |       |      |         |         |       |
| Level 1    |    |       |       |            |         |     |      |     |      |       |      |         |         |       |
| LnA, Lev1  | -  | Both  | -     | -          | 913     | -   | -    | -   | 339  | -     |      | -       | 6112    | -     |
| Wall A-1   | 1  | Both  | -     | -          | 913     | -   | 1.0  | -   | 339  | -     |      | -       | 6112    | -     |
| Seg. 1     | -  | Both  | 50.6  | -          | 253     | -   | 1.0  | -   | 339  | -     |      | 339     | 1693    | 0.15  |
| Seg. 2     | -  | Both  | 50.6  | -          | 253     | -   | 1.0  | -   | 339  | -     |      | 339     | 1693    | 0.15  |
| Seg. 3     | -  | Both  | 50.6  | -          | 228     | -   | 1.0  | -   | 339  | -     |      | 339     | 1523    | 0.15  |
| Seg. 4     | -  | Both  | 44.9  | -          | 180     | -   | .89  | -   | 301  | -     |      | 301     | 1204    | 0.15  |
| Line B     |    |       |       |            |         |     |      |     |      |       |      |         |         |       |
| LnB, Lev1  | -  | Both  | -     | -          | 1280    | -   | -    | -   | 339  | -     |      | -       | 8097    | -     |
| Wall B-1   | 1  | Both  | -     | -          | 1280    | -   | 1.0  | -   | 339  | -     |      | -       | 8097    | -     |
| Seq. 1     | -  | Both  | 41.6  | -          | 146     | -   | .78  | -   | 263  | -     |      | 263     | 922     | 0.16  |
| Seg. 2     | -  | Both  | 43.6  | -          | 160     | -   | .81  | -   | 276  | -     |      | 276     | 1011    | 0.16  |
| Seq. 3     | -  | Both  | 53.5  | -          | 339     | -   | 1.0  | -   | 339  | -     |      | 339     | 2144    | 0.16  |
| Seq. 4     | _  | Both  | 44.6  | _          | 167     | -   | .83  | -   | 282  | -     |      | 282     | 1058    | 0.16  |
| Seg. 5     | _  | Both  | 53.5  | _          | 468     | _   | 1.0  | _   | 339  | _     |      | 339     | 2962    | 0.16  |
| 201.0      |    | 20011 | 55.5  |            | 100     |     |      |     | 000  |       |      | 222     | 2202    |       |

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir - Direction of wind force along shearline.

v - Design shear force on segment = ASD factored shear force per unit FHS

vmax - Collector shear force for perforated walls as per SDPWS eqn. 4.3-8 = V/FHS/Co. Full height sheathing (FHS) factored for narrow segments as per 4.3.4.3

V - ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment

Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.3.2. For segment: Aspect ratio adjustment from SDPWS 4.3.3.4.1

Int - Unit shear capacity of interior sheathing; Ext - Unit shear capacity of exterior sheathing. For wall: Unfactored. For segment: Include Cub factor and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-5.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using SDPWS 4.3-3.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "S" indicates that the wind design criterior was critical in selecting wall.

#### Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,4.

#### Flexible Diaphragm Seismic Design

#### SEISMIC INFORMATION

| Level | Mass  | Area    | Story She | ar [lbs] | Diaphragm Force Fpx [lbs] |      |  |
|-------|-------|---------|-----------|----------|---------------------------|------|--|
|       | [lbs] | [sq.ft] | E-W       | N-S      | E-W                       | N-S  |  |
|       |       |         |           |          |                           |      |  |
| 1     | 25833 | 900.0   | 3974      | 3974     | 5418                      | 5418 |  |
| All   | 25833 | -       | 3974      | 3974     | -                         | -    |  |
|       |       |         |           |          |                           |      |  |

Legend:

Building mass – Sum of all generated and input building masses on level = wx in ASCE 7 equation 12.8-12.

Storey shear – Total unfactored (strength-level) shear force induced at level x, = Fx in ASCE 7 equation 12.8-11.

Diaphragm force Fpx - Unfactored force intended for diaphragm design from Eqn 12.10-1; used by Shearwalls only for drag strut forces, see 12.10.2.1 Exception 2.

#### Redundancy Factor p (rho):

E-W 1.00, N-S 1.00 Automatically calculated according to ASCE 7 12.3.4.2.

#### Vertical Earthquake Load Ev

Ev = 0.2 Sds D; Sds = 1.05; Ev = 0.210 D unfactored; 0.147 D factored; total dead load factor: 0.6 - 0.147 = 0.453 tension, 1.0 + 0.147 = 1.147 compression.

#### SHEAR RESULTS (flexible seismic design)

| N-S        | Ŵ  | For  | ASD S | hear Force | e [plf] | Asp | -Cub |     | Allo | wable  | Shea | r [plf] |         | Resp. |
|------------|----|------|-------|------------|---------|-----|------|-----|------|--------|------|---------|---------|-------|
| Shearlines | Gp | Dir  | v     | vmax       | V [lbs] | Int | Ext  | Int | Ext  | Co     | С    | Cmb     | V [lbs] | Ratio |
| Line 1     |    |      |       |            |         |     |      |     |      |        |      |         |         |       |
| Level 1    |    |      |       |            |         |     |      |     |      |        |      |         |         |       |
| Ln1, Lev1  | -  | Both | -     | -          | 1387    | -   | -    | -   | 242  | -      |      | -       | 5320    | -     |
| Wall 1-1   | 1  | Both | -     | -          | 1387    | -   | 1.0  | -   | 242  | -      |      | -       | 5320    | -     |
| Seg. 1     | -  | Both | 63.0  | -          | 788     | -   | 1.0  | -   | 242  | -      |      | 242     | 3023    | 0.26  |
| Seg. 2     | -  | Both | 63.0  | -          | 599     | -   | 1.0  | -   | 242  | -      |      | 242     | 2297    | 0.26  |
| Line 2     |    |      |       |            |         |     |      |     |      |        |      |         |         |       |
| Ln2, Lev1  | -  | Both | -     | -          | 1395    | -   | -    | -   | 242  | -      |      | -       | 5454    | -     |
| Wall 2-1   | 1  | Both | -     | -          | 1395    | -   | 1.0  | -   | 242  | -      |      | -       | 5454    | -     |
| Seg. 1     | -  | Both | 61.9  | -          | 1175    | -   | 1.0  | -   | 242  | -      |      | 242     | 4594    | 0.26  |
| Seg. 2     | -  | Both | 55.0  | -          | 220     | -   | .89  | -   | 215  | -      |      | 215     | 860     | 0.26  |
|            |    |      |       |            |         |     |      |     |      |        |      |         |         |       |
| E-W        | w  | For  | ASD S | hear Force | e [plf] | Asp | -Cub |     | Allo | owable | Shea | r [plf] |         | Resp. |
| Shearlines | Gp | Dir  | v     | vmax       | V [lbs] | Int | Ext  | Int | Ext  | Co     | С    | Cmb     | V [lbs] | Ratio |
| Line A     |    |      |       |            |         |     |      |     |      |        |      |         |         |       |
| Level 1    |    |      |       |            |         |     |      |     |      |        |      |         |         |       |
| LnA, Lev1  | -  | Both | _     | -          | 1213    | -   | -    | -   | 242  | -      |      | -       | 4366    | -     |
| Wall A-1   | 1  | Both | _     | -          | 1213    | -   | 1.0  | -   | 242  | -      |      | -       | 4366    | -     |
| Seg. 1     | -  | Both | 67.2  | -          | 336     | -   | 1.0  | -   | 242  | -      |      | 242     | 1209    | 0.28  |
| Seg. 2     | -  | Both | 67.2  | -          | 336     | -   | 1.0  | -   | 242  | -      |      | 242     | 1209    | 0.28  |
| Seg. 3     | -  | Both | 67.2  | -          | 302     | -   | 1.0  | -   | 242  | -      |      | 242     | 1088    | 0.28  |
| Seg. 4     | -  | Both | 59.7  | -          | 239     | -   | .89  | -   | 215  | -      |      | 215     | 860     | 0.28  |
| Line B     |    |      |       |            |         |     |      |     |      |        |      |         |         |       |
| LnB, Lev1  | -  | Both | _     | -          | 1569    | -   | -    | -   | 242  | -      |      | -       | 5783    | -     |
| Wall B-1   | 1  | Both | _     | -          | 1569    | -   | 1.0  | -   | 242  | -      |      | -       | 5783    | -     |
| Seg. 1     | -  | Both | 51.0  | -          | 179     | -   | .78  | -   | 188  | -      |      | 188     | 658     | 0.27  |
| Seg. 2     | -  | Both | 53.5  | -          | 196     | -   | .81  | -   | 197  | -      |      | 197     | 722     | 0.27  |
| Seg. 3     | -  | Both | 65.6  | -          | 415     | -   | 1.0  | -   | 242  | -      |      | 242     | 1531    | 0.27  |
| Seg. 4     | -  | Both | 54.7  | -          | 205     | -   | .83  | -   | 202  | -      |      | 202     | 756     | 0.27  |
| Seg. 5     | -  | Both | 65.6  | -          | 574     | -   | 1.0  | -   | 242  | -      |      | 242     | 2116    | 0.27  |
| -          |    |      |       |            |         |     |      |     |      |        |      |         |         |       |

Legend:

W Gp - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall. "^" means that this wall is critical for all walls in the Standard Wall group.

For Dir – Direction of seismic force along shearline.

v - Design shear force on segment = ASD factored shear force per unit FHS

vmax - Collector shear force for perforated walls as per SDPWS eqn. 4.3-8 = V/FHS/Co. Full height sheathing (FHS) factored for narrow segments as per 4.3.4.3

V - ASD factored shear force. For shearline: total shearline force. For wall: total of all segments on wall. For segment: force on segment Asp/Cub – For wall: Unblocked structural wood panel factor Cub from SDPWS 4.3.3.2. For segment: Aspect ratio adjustment from SDPWS 4.3.3.4.1

Int - Unit shear capacity of interior sheathing; Ext - Unit shear capacity of exterior sheathing. For wall: Unfactored. For segment: Include Cub factor and aspect ratio adjustments.

Co - Adjustment factor for perforated walls from SDPWS Equation 4.3-5.

C - Sheathing combination rule, A = Add capacities, S = Strongest side or twice weakest, G = Stiffness-based using SDPWS 4.3-3.

Cmb - Combined interior and exterior unit shear capacity including perforated wall factor Co.

V – Total factored shear capacity of shearline, wall or segment.

Crit Resp – Response ratio = v/Cmb = design shear force/unit shear capacity. "W" indicates that the wind design criterior was critical in selecting wall.

Notes:

Refer to Elevation View diagrams for individual level for uplift anchorage force t for perforated walls given by SDPWS 4.3.6.4.2,4.



## **BEAM CALCULATIONS - 190390.4te**

| 01: ROOF FRAMING      |         |                                              |          |
|-----------------------|---------|----------------------------------------------|----------|
| Member Name           | Results | Current Solution                             | Comments |
| R1                    | Passed  | 1 Piece(s) 4 x 8 Douglas Fir-Larch No. 2     |          |
| R2                    | Passed  | 1 Piece(s) 4 x 8 Douglas Fir-Larch No. 2     |          |
| R3                    | Passed  | 1 Piece(s) 4 x 8 Douglas Fir-Larch No. 2     |          |
| R4                    | Passed  | 1 Piece(s) 4 x 8 Douglas Fir-Larch No. 2     |          |
| R5                    | Passed  | 1 Piece(s) 4 x 8 Douglas Fir-Larch No. 2     |          |
| R6                    | Passed  | 1 Piece(s) 4 x 8 Douglas Fir-Larch No. 2     |          |
| R7                    | Passed  | 1 Piece(s) 4 x 8 Douglas Fir-Larch No. 2     |          |
| GT1 FOR LOAD REF ONLY | Passed  | 1 Piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam |          |
| R8                    | Passed  | 1 Piece(s) 6 x 12 Douglas Fir-Larch No. 2    |          |
| R9                    | Passed  | 1 Piece(s) 6 x 12 Douglas Fir-Larch No. 2    |          |
| R10                   | Passed  | 1 Piece(s) 6 x 10 Douglas Fir-Larch No. 2    |          |
| R11                   | Passed  | 1 Piece(s) 4 x 8 Douglas Fir-Larch No. 2     |          |
| 02: FLOOR FRAMING     |         |                                              |          |
| Member Name           | Results | Current Solution                             | Comments |
| M1                    | Passed  | 1 Piece(s) 4 x 10 Hem-Fir No. 2              |          |
| M2                    | Passed  | 1 Piece(s) 9 1/2" TJI® 110 @ 16" OC          |          |

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

> Page 1 of 15 19 of 54





| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 101 @ 0           | 3281 (1.50") | Passed (3%)     |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 36 @ 8 3/4"       | 3502         | Passed (1%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-Ibs)       | 57 @ 1' 1 1/2"    | 3438         | Passed (2%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.000 @ 1' 1 1/2" | 0.075        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.000 @ 1' 1 1/2" | 0.112        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 2' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 2' 3" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                   |       | Bearing   | l        | Loads | s to Suppor |       |             |
|-------------------|-------|-----------|----------|-------|-------------|-------|-------------|
| Supports          | Total | Available | Required | Dead  | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 1.50" | 1.50"     | 1.50"    | 45    | 56          | 101   | None        |
| 2 - Trimmer - SPF | 1.50" | 1.50"     | 1.50"    | 45    | 56          | 101   | None        |

| Loads                 | Location (Side) | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|-----------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 2' 3"      | N/A                | 6.4            |                |          |
| 1 - Uniform (PSF)     | 0 to 2' 3"      | 2'                 | 16.8           | 25.0           | ROOF     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

> Page 2 of 15 20 of 54





| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 265 @ 0           | 3281 (1.50") | Passed (8%)     | -    | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 146 @ 8 3/4"      | 3502         | Passed (4%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 215 @ 1' 7 1/2"   | 3438         | Passed (6%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.001 @ 1' 7 1/2" | 0.108        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.002 @ 1' 7 1/2" | 0.162        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 3' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 3" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                   | Bearing |           |          | Load | s to Suppor |       |             |
|-------------------|---------|-----------|----------|------|-------------|-------|-------------|
| Supports          | Total   | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 1.50"   | 1.50"     | 1.50"    | 113  | 152         | 265   | None        |
| 2 - Trimmer - SPF | 1.50"   | 1.50"     | 1.50"    | 113  | 152         | 265   | None        |

| Loads                 | Location (Side) | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|-----------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 3' 3"      | N/A                | 6.4            |                |          |
| 1 - Uniform (PSF)     | 0 to 3' 3"      | 3' 9"              | 16.8           | 25.0           | ROOF     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

Page 3 of 15





| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 1164 @ 0          | 3281 (1.50") | Passed (35%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 642 @ 8 3/4"      | 3502         | Passed (18%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-Ibs)       | 946 @ 1' 7 1/2"   | 3438         | Passed (28%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.006 @ 1' 7 1/2" | 0.108        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.010 @ 1' 7 1/2" | 0.162        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 3' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 3" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                   | Bearing |           |          | Load | s to Suppor |       |             |
|-------------------|---------|-----------|----------|------|-------------|-------|-------------|
| Supports          | Total   | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 1.50"   | 1.50"     | 1.50"    | 474  | 691         | 1165  | None        |
| 2 - Trimmer - SPF | 1.50"   | 1.50"     | 1.50"    | 474  | 691         | 1165  | None        |

| Loads                 | Location (Side) | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|-----------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 3' 3"      | N/A                | 6.4            |                |          |
| 1 - Uniform (PSF)     | 0 to 3' 3"      | 17'                | 16.8           | 25.0           | ROOF     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

Page 4 of 15





| Design Results        | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 1343 @ 0           | 3281 (1.50") | Passed (41%)    | -    | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 821 @ 8 3/4"       | 3502         | Passed (23%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 1260 @ 1' 10 1/2"  | 3438         | Passed (37%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.011 @ 1' 10 1/2" | 0.125        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.018 @ 1' 10 1/2" | 0.188        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 3' 9" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 9" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                   | Bearing |           |          | Load | s to Suppor |       |             |
|-------------------|---------|-----------|----------|------|-------------|-------|-------------|
| Supports          | Total   | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 1.50"   | 1.50"     | 1.50"    | 547  | 797         | 1344  | None        |
| 2 - Trimmer - SPF | 1.50"   | 1.50"     | 1.50"    | 547  | 797         | 1344  | None        |

| Loads                 | Location (Side) | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|-----------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 3' 9"      | N/A                | 6.4            |                |          |
| 1 - Uniform (PSF)     | 0 to 3' 9"      | 17'                | 16.8           | 25.0           | ROOF     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

Page 5 of 15

### Permit Number: 19-02196

23 of 54





| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 806 @ 0           | 3281 (1.50") | Passed (25%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 284 @ 8 3/4"      | 3502         | Passed (8%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-Ibs)       | 453 @ 1' 1 1/2"   | 3438         | Passed (13%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.001 @ 1' 1 1/2" | 0.075        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.002 @ 1' 1 1/2" | 0.112        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 2' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 2' 3" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                   |       | Bearing   |          |      | s to Suppor |       |             |
|-------------------|-------|-----------|----------|------|-------------|-------|-------------|
| Supports          | Total | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 1.50" | 1.50"     | 1.50"    | 328  | 478         | 806   | None        |
| 2 - Trimmer - SPF | 1.50" | 1.50"     | 1.50"    | 328  | 478         | 806   | None        |

| Loads                 | Location (Side) | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|-----------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 2' 3"      | N/A                | 6.4            |                |          |
| 1 - Uniform (PSF)     | 0 to 2' 3"      | 17'                | 16.8           | 25.0           | ROOF     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

Page 6 of 15

24 of 54

Permit Number: 19-02196





| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 183 @ 0           | 3281 (1.50") | Passed (6%)     | -    | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 65 @ 8 3/4"       | 3502         | Passed (2%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 103 @ 1' 1 1/2"   | 3438         | Passed (3%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.000 @ 1' 1 1/2" | 0.075        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.001 @ 1' 1 1/2" | 0.112        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 2' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 2' 3" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                   | Bearing |           |          | Load | s to Suppor |       |             |
|-------------------|---------|-----------|----------|------|-------------|-------|-------------|
| Supports          | Total   | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 1.50"   | 1.50"     | 1.50"    | 78   | 105         | 183   | None        |
| 2 - Trimmer - SPF | 1.50"   | 1.50"     | 1.50"    | 78   | 105         | 183   | None        |

| Loads                 | Location (Side) | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|-----------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 2' 3"      | N/A                | 6.4            |                |          |
| 1 - Uniform (PSF)     | 0 to 2' 3"      | 3' 9"              | 16.8           | 25.0           | ROOF     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

Page 7 of 15

### Permit Number: 19-02196

25 of 54





| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 961 @ 0           | 3281 (1.50") | Passed (29%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 530 @ 8 3/4"      | 3502         | Passed (15%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 781 @ 1' 7 1/2"   | 3438         | Passed (23%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.005 @ 1' 7 1/2" | 0.108        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.008 @ 1' 7 1/2" | 0.162        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 3' 3" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 3" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                   |       | Bearing   |          |      | s to Suppor |       |             |
|-------------------|-------|-----------|----------|------|-------------|-------|-------------|
| Supports          | Total | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 1.50" | 1.50"     | 1.50"    | 392  | 569         | 961   | None        |
| 2 - Trimmer - SPF | 1.50" | 1.50"     | 1.50"    | 392  | 569         | 961   | None        |

| Loads                 | Location (Side) | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|-----------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 3' 3"      | N/A                | 6.4            |                |          |
| 1 - Uniform (PSF)     | 0 to 3' 3"      | 14'                | 16.8           | 25.0           | ROOF     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

> Page 8 of 15 26 of 54

### Permit Number: 19-02196



# MEMBER REPORTROOF FRAMING, GT1 FOR LOAD REF ONLY1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

#### Overall Length: 24' 7"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

| Design Results        | Actual @ Location  | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 3559 @ 2"          | 8181 (3.50") | Passed (44%)   |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 3149 @ 1' 5"       | 15085        | Passed (21%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-Ibs)   | 21285 @ 12' 3 1/2" | 37169        | Passed (57%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.623 @ 12' 3 1/2" | 0.808        | Passed (L/467) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 1.110 @ 12' 3 1/2" | 1.212        | Passed (L/262) |      | 1.0 D + 1.0 S (All Spans)   |

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/360) and TL (L/240).

- Top Edge Bracing (Lu): Top compression edge must be braced at 24' 7" o/c unless detailed otherwise.

Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 24' 7" o/c unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 0.97 that was calculated using length L = 24' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

|                     |       | Bearing   |          |      | s to Suppor |       |             |
|---------------------|-------|-----------|----------|------|-------------|-------|-------------|
| Supports            | Total | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Stud wall - SPF | 3.50" | 3.50"     | 1.52"    | 1562 | 1997        | 3559  | Blocking    |
| 2 - Stud wall - SPF | 3.50" | 3.50"     | 1.52"    | 1562 | 1997        | 3559  | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Loads                 | Location (Side)     | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|---------------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 24' 7"         | N/A                | 18.0           |                |          |
| 1 - Uniform (PSF)     | 0 to 24' 7" (Front) | 6' 6"              | 16.8           | 25.0           | Roof     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

Page 9 of 15

### Permit Number: 19-02196

27 of 54







| Design Results        | Actual @ Location  | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 5119 @ 1 1/2"      | 10313 (3.00") | Passed (50%)    | -    | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 4130 @ 1' 2 1/2"   | 8244          | Passed (50%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 6339 @ 3' 7 3/8"   | 10166         | Passed (62%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.051 @ 4' 1 5/16" | 0.275         | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.088 @ 4' 1 1/4"  | 0.412         | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 6" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                   | Bearing |           |          | Load | s to Suppor |       |             |
|-------------------|---------|-----------|----------|------|-------------|-------|-------------|
| Supports          | Total   | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 3.00"   | 3.00"     | 1.50"    | 2215 | 2904        | 5119  | None        |
| 2 - Trimmer - SPF | 3.00"   | 3.00"     | 1.50"    | 1152 | 1580        | 2732  | None        |

|                       |                 | Tributary | Dead   | Snow   |                                                     |
|-----------------------|-----------------|-----------|--------|--------|-----------------------------------------------------|
| Loads                 | Location (Side) | Width     | (0.90) | (1.15) | Comments                                            |
| 0 - Self Weight (PLF) | 0 to 8' 6"      | N/A       | 16.0   |        |                                                     |
| 1 - Uniform (PSF)     | 0 to 1'         | 2'        | 16.8   | 25.0   | ROOF                                                |
| 2 - Uniform (PSF)     | 1' to 8' 6"     | 13'       | 16.8   | 25.0   | ROOF                                                |
| 3 - Point (lb)        | 1'              | N/A       | 1562   | 1997   | Linked from: GT1<br>FOR LOAD REF<br>ONLY, Support 1 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

> Page 10 of 15 28 of 54

### Permit Number: 19-02196



Overall Length: 6' 6"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

| Design Results        | Actual @ Location   | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|---------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 3518 @ 6' 4 1/2"    | 10313 (3.00") | Passed (34%)    | -    | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 3398 @ 5' 3 1/2"    | 8244          | Passed (41%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 6399 @ 4' 6"        | 10166         | Passed (63%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.026 @ 3' 4 5/8"   | 0.208         | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.045 @ 3' 4 11/16" | 0.313         | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

SUSTAINABLE FORESTRY INITIATIVE

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 6' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 6" o/c unless detailed otherwise.

· Applicable calculations are based on NDS.

|                   | Bearing |           |          | Load | s to Suppor |       |             |
|-------------------|---------|-----------|----------|------|-------------|-------|-------------|
| Supports          | Total   | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Trimmer - SPF | 3.00"   | 3.00"     | 1.50"    | 1177 | 1578        | 2755  | None        |
| 2 - Trimmer - SPF | 3.00"   | 3.00"     | 1.50"    | 1537 | 1981        | 3518  | None        |

|                       |                 | Tributary | Dead   | Snow   |                                                     |
|-----------------------|-----------------|-----------|--------|--------|-----------------------------------------------------|
| Loads                 | Location (Side) | Width     | (0.90) | (1.15) | Comments                                            |
| 0 - Self Weight (PLF) | 0 to 6' 6"      | N/A       | 16.0   |        |                                                     |
| 1 - Uniform (PSF)     | 4' 6" to 6' 6"  | 2'        | 16.8   | 25.0   | ROOF                                                |
| 2 - Uniform (PSF)     | 0 to 4' 6"      | 13'       | 16.8   | 25.0   | ROOF                                                |
| 3 - Point (lb)        | 4' 6"           | N/A       | 1562   | 1997   | Linked from: GT1<br>FOR LOAD REF<br>ONLY, Support 1 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

29 of 54

### Permit Number: 19-02196

Page 11 of 15



Overall Length: 10' 1"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 2331 @ 2"         | 8181 (3.50") | Passed (28%)    | -    | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 1830 @ 1' 1"      | 6810         | Passed (27%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 5493 @ 5' 1/2"    | 6937         | Passed (79%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.107 @ 5' 1/2"   | 0.325        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.184 @ 5' 1/2"   | 0.488        | Passed (L/636)  |      | 1.0 D + 1.0 S (All Spans)   |

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 1" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 1" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                     | Bearing |           |          | Load | s to Suppor |       |             |
|---------------------|---------|-----------|----------|------|-------------|-------|-------------|
| Supports            | Total   | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Stud wall - SPF | 3.50"   | 3.50"     | 1.50"    | 976  | 1355        | 2331  | Blocking    |
| 2 - Stud wall - SPF | 3.50"   | 3.50"     | 1.50"    | 976  | 1355        | 2331  | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Loads                 | Location (Side)     | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|---------------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 10' 1"         | N/A                | 13.2           |                |          |
| 1 - Uniform (PSF)     | 0 to 10' 1" (Front) | 10' 9"             | 16.8           | 25.0           | Roof     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

> Page 12 of 15 30 of 54

### Permit Number: 19-02196



Overall Length: 4' 4"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 421 @ 2"          | 5206 (3.50") | Passed (8%)     | -    | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 247 @ 10 3/4"     | 3502         | Passed (7%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 389 @ 2' 2"       | 3438         | Passed (11%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.004 @ 2' 2"     | 0.133        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.006 @ 2' 2"     | 0.200        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch: 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 4" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 4" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                     | Bearing |           |          | Load | s to Suppor |       |             |
|---------------------|---------|-----------|----------|------|-------------|-------|-------------|
| Supports            | Total   | Available | Required | Dead | Snow        | Total | Accessories |
| 1 - Stud wall - SPF | 3.50"   | 3.50"     | 1.50"    | 177  | 244         | 421   | Blocking    |
| 2 - Stud wall - SPF | 3.50"   | 3.50"     | 1.50"    | 177  | 244         | 421   | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Loads                 | Location (Side)    | Tributary<br>Width | Dead<br>(0.90) | Snow<br>(1.15) | Comments |
|-----------------------|--------------------|--------------------|----------------|----------------|----------|
| 0 - Self Weight (PLF) | 0 to 4' 4"         | N/A                | 6.4            |                |          |
| 1 - Uniform (PSF)     | 0 to 4' 4" (Front) | 4' 6"              | 16.8           | 25.0           | Roof     |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

> Page 13 of 15 31 of 54

### Permit Number: 19-02196



Overall Length: 6' 4"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 1926 @ 2"         | 4961 (3.50") | Passed (39%)    |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)           | 1280 @ 1' 3/4"    | 3238         | Passed (40%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)       | 2737 @ 3' 2"      | 4242         | Passed (65%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.047 @ 3' 2"     | 0.200        | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in) | 0.059 @ 3' 2"     | 0.300        | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 6' 4" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 4" o/c unless detailed otherwise.

Applicable calculations are based on NDS.

|                     | Bearing |           |          | Loads | s to Suppor   |       |             |
|---------------------|---------|-----------|----------|-------|---------------|-------|-------------|
| Supports            | Total   | Available | Required | Dead  | Floor<br>Live | Total | Accessories |
| 1 - Stud wall - SPF | 3.50"   | 3.50"     | 1.50"    | 406   | 1520          | 1926  | Blocking    |
| 2 - Stud wall - SPF | 3.50"   | 3.50"     | 1.50"    | 406   | 1520          | 1926  | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Loads                 | Location (Side)    | Tributary<br>Width | Dead<br>(0.90) | Floor Live<br>(1.00) | Comments |
|-----------------------|--------------------|--------------------|----------------|----------------------|----------|
| 0 - Self Weight (PLF) | 0 to 6' 4"         | N/A                | 8.2            |                      |          |
| 1 - Uniform (PSF)     | 0 to 6' 4" (Front) | 12'                | 10.0           | 40.0                 | FLOOR    |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software 0                                                    | Operator          | Job Notes |
|---------------------------------------------------------------------|-------------------|-----------|
| Alec Hodge<br>Hodge Engineerii<br>(253) 857-7055<br>alec@hodgeengii | ng<br>neering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

> Page 14 of 15 32 of 54

### Permit Number: 19-02196



Overall Length: 12' 7"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.; Drawing is Conceptual

| Design Results             | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|----------------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs)      | 413 @ 2 1/2"      | 1041 (2.25") | Passed (40%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 400 @ 3 1/2"      | 1220         | Passed (33%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | 1234 @ 6' 3 1/2"  | 2500         | Passed (49%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.153 @ 6' 3 1/2" | 0.304        | Passed (L/956) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in)      | 0.191 @ 6' 3 1/2" | 0.608        | Passed (L/765) |      | 1.0 D + 1.0 L (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | 47                | 40           | Passed         |      |                             |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 6" o/c unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 5" o/c unless detailed otherwise.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro<sup>™</sup> Rating include: None

|                     |       | Bearing   |          | Load | s to Suppor   |       |                  |
|---------------------|-------|-----------|----------|------|---------------|-------|------------------|
| Supports            | Total | Available | Required | Dead | Floor<br>Live | Total | Accessories      |
| 1 - Stud wall - SPF | 3.50" | 2.25"     | 1.75"    | 84   | 336           | 420   | 1 1/4" Rim Board |
| 2 - Stud wall - SPF | 3.50" | 2.25"     | 1.75"    | 84   | 336           | 420   | 1 1/4" Rim Board |

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

| Loads             | Location (Side) | Spacing | Dead<br>(0.90) | Floor Live<br>(1.00) | Comments |
|-------------------|-----------------|---------|----------------|----------------------|----------|
| 1 - Uniform (PSF) | 0 to 12' 7"     | 16"     | 10.0           | 40.0                 | FLOOR    |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Forte Software Operator

| Forte Software Operator                                                        | Job Notes |
|--------------------------------------------------------------------------------|-----------|
| Alec Hodge<br>Hodge Engineering<br>(253) 857-7055<br>alec@hodgeengineering.com |           |

6/24/2019 1:21:01 PM Forte v5.5, Design Engine: V7.3.2.4 BEAM CALCULATIONS - 190390.4te

> Page 15 of 15 33 of 54

### Permit Number: 19-02196

## Post Capacities







Post Allowable Compression Loads for Douglas-Fir-Larch

|                | Lumber |       | Perp to | Perp to Compression Capacity Parallel to Grain, Pc (100) |       |       |       |       |                                | ression Cap | acity Paralle | I to Grain, P | (160) |
|----------------|--------|-------|---------|----------------------------------------------------------|-------|-------|-------|-------|--------------------------------|-------------|---------------|---------------|-------|
| Framing        | Sizo   | Grado | Grain,  | Nominal Top Plate Height (ft.)                           |       |       |       |       | Nominal Top Plate Height (ft.) |             |               |               |       |
|                | 3126   | diade | Pc⊥     | 8                                                        | 9     | 10    | 11    | 12    | 8                              | 9           | 10            | 11            | 12    |
| -              | 2x4    | #2    | 3280    | 3170                                                     | 2565  | 2105  | 1755  | 1485  | 3345                           | 2665        | 2170          | 1795          | 1510  |
|                | 3x4    | #2    | 5470    | 5285                                                     | 4275  | 3510  | 2930  | 2475  | 5570                           | 4440        | 3615          | 2995          | 2520  |
|                | 2-2x4  | #2    | 6565    | 6340                                                     | 5130  | 4215  | 3515  | 2970  | 6685                           | 5330        | 4335          | 3590          | 3020  |
| 4-Inch         | 4x4    | #2    | 7655    | 7395                                                     | 5985  | 4915  | 4100  | 3465  | 7800                           | 6215        | 5060          | 4190          | 3525  |
| Wall           | 3-2x4  | #2    | 9845    | 9510                                                     | 7695  | 6320  | 5270  | 4455  | 10030                          | 7995        | 6505          | 5390          | 4535  |
| 1              | 4x6    | #2    | 12030   | 11540                                                    | 9360  | 7700  | 6425  | 5430  | 12215                          | 9745        | 7935          | 6575          | 5535  |
|                | 4x8    | #2    | 15860   | 15090                                                    | 12270 | 10105 | 8440  | 7140  | 16035                          | 12805       | 10435         | 8650          | 7285  |
|                | 4x10   | #2    | 20235   | 19080                                                    | 15555 | 12835 | 10730 | 9085  | 20365                          | 16285       | 13280         | 11015         | 9280  |
|                | 2x6    | #2    | 5155    | 8970                                                     | 7940  | 6935  | 6025  | 5235  | 11030                          | 9230        | 7740          | 6535          | 5575  |
|                | 3x6    | #2    | 8595    | 14945                                                    | 13235 | 11560 | 10040 | 8725  | 18385                          | 15380       | 12895         | 10895         | 9290  |
| Clash          | 2-2x6  | #2    | 10315   | 17935                                                    | 15885 | 13875 | 12050 | 10470 | 22060                          | 18455       | 15475         | 13075         | 11145 |
| 0-Inch<br>Wall | 4x6    | #2    | 12030   | 20925                                                    | 18530 | 16185 | 14060 | 12215 | 25735                          | 21530       | 18055         | 15255         | 13005 |
| vvdii          | 3-2x6  | #2    | 15470   | 26905                                                    | 23825 | 20810 | 18075 | 15705 | 33090                          | 27685       | 23215         | 19610         | 16720 |
|                | 6x6    | #1    | 18905   | 25260                                                    | 23500 | 21505 | 19415 | 17375 | 34255                          | 30035       | 26025         | 22475         | 19450 |
|                | 6x8    | #1    | 25780   | 34450                                                    | 32045 | 29320 | 26475 | 23690 | 46715                          | 40955       | 35485         | 30645         | 26520 |

#### Post Allowable Compression Loads for Hem-Fir

|                                       | Lumber |       | Perp to | Compression Capacity Parallel to Grain, Pc (100) |       |       |       | Compression Capacity Parallel to Grain, Pc (160) |                                |       |       |       |       |
|---------------------------------------|--------|-------|---------|--------------------------------------------------|-------|-------|-------|--------------------------------------------------|--------------------------------|-------|-------|-------|-------|
| Framing                               | Cino   | Grado | Grain,  | Nominal Top Plate Height (ft.)                   |       |       |       |                                                  | Nominal Top Plate Height (ft.) |       |       |       |       |
|                                       | 0126   | Graue | Pc⊥     | 8                                                | 9     | 10    | 11    | 12                                               | 8                              | 9     | 10    | 11    | 12    |
|                                       | 2x4    | #2    | 2125    | 2630                                             | 2115  | 1730  | 1435  | 1210                                             | 2745                           | 2180  | 1770  | 1465  | 1230  |
|                                       | 3x4    | #2    | 3545    | 4385                                             | 3525  | 2880  | 2395  | 2020                                             | 4570                           | 3630  | 2950  | 2440  | 2050  |
| 4-Inch                                | 2-2x4  | #2    | 4255    | 5260                                             | 4230  | 3460  | 2875  | 2425                                             | 5485                           | 4355  | 3540  | 2925  | 2460  |
| Wall                                  | 4x4    | #2    | 4960    | 6140                                             | 4935  | 4035  | 3355  | 2830                                             | 6400                           | 5085  | 4125  | 3415  | 2870  |
|                                       | 3-2x4  | #2    | 6380    | 7890                                             | 6340  | 5185  | 4310  | 3635                                             | 8230                           | 6535  | 5305  | 4390  | 3690  |
|                                       | 4-2x4  | #2    | 8505    | 10525                                            | 8455  | 6915  | 5750  | 4850                                             | 10970                          | 8715  | 7075  | 5855  | 4920  |
| · · · · · · · · · · · · · · · · · · · | 2x6    | #2    | 3340    | 7950                                             | 6880  | 5905  | 5065  | 4365                                             | 9385                           | 7735  | 6425  | 5395  | 4580  |
| Clash                                 | 3x6    | #2    | 5570    | 13250                                            | 11470 | 9840  | 8440  | 7270                                             | 15640                          | 12890 | 10710 | 8995  | 7635  |
| 0-IIICII                              | 2-2x6  | #2    | 6685    | 15900                                            | 13765 | 11810 | 10130 | 8725                                             | 18765                          | 15470 | 12850 | 10790 | 9165  |
| wan                                   | 3-2x6  | #2    | 10025   | 23855                                            | 20645 | 17715 | 15195 | 13090                                            | 28150                          | 23205 | 19275 | 16185 | 13745 |
|                                       | 4-2x6  | #2    | 13365   | 31805                                            | 27525 | 23620 | 20260 | 17455                                            | 37535                          | 30935 | 25700 | 21585 | 18325 |

 The allowable (ASD) loads are based on the 2012 National Design Specification for Wood Construction (NDS) including the March 2013 Addendum, for lumber with a moisture content of 19% or less.

- 2. Post heights are based on standard precut stud heights and associated top plate heights. For Douglas Fir, wall height is nominal height plus 3/4\* (California stud height). For all other species, wall height is nominal height plus 1 1/8\*. Effective post lengths, le, are the actual wall height s minus the thickness of 3-2x plates (4 1/2\*).
- 3. Shaded values are limited by the Perpendicular to Grain bearing capacity, P<sub>C⊥</sub>, when posts bear on wood sill plates. Where posts and sill plates are different species, Designer shall limit allowable load to the lower of the post capacity or the perpendicular to grain capacity for each species used.
- 4. Perpendicular to grain allowable loads do not include the NDS Bearing Area Factor, C<sub>b</sub>. For posts whose bearing area is not closer than 3" from the end of a sill plate, the Pc⊥ values may be multiplied by C<sub>b</sub>.

| T (in.) | 1.5  | 2.5  | 3    | 3.5  | 4.5  | 5.5  | ≥6 | T = Bea             |
|---------|------|------|------|------|------|------|----|---------------------|
| Cb      | 1.25 | 1.15 | 1.13 | 1.11 | 1.08 | 1.07 | 1  | C <sub>b</sub> = Be |

T = Bearing Length (post thickness) C<sub>b</sub> = Bearing Area Factor per NDS 3.10.4

- 5. Allowable tension loads are based on net section assuming hole size equal to bolt diameter plus 1/16" with the hole drilled on the 3 1/2" face of post for a 4-inch wall and on the 5 1/2" face of post for a 6-inch wall. Tension loads have been increased for wind or seismic loading with no further increase allowed. Reduce where other loads govern.
- 6. Values do not consider combined axial and out-of-plane bending.
- 7. Bolt diameter "None" indicates full cross section.





Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. E Engineer: Gig Harbor, WA 98332 Project Descr:

### **General Footing**

Lic. # : KW-06007122 24" footing - 1500 psf soil Description :

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

#### Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015

### **General Information**

Width parallel to X-X Axis

Length parallel to Z-Z Axis

| Material Properties<br>fc : Concrete 28 day strength<br>fy : Rebar Yield<br>Ec : Concrete Elastic Modulus<br>Concrete Density<br>j Values Flexure | =<br>=<br>= 3<br>= | 2.50 ksi<br>60.0 ksi<br>,122.0 ksi<br>145.0 pcf<br>0.90 | Soil Design Values<br>Allowable Soil Bearing<br>Increase Bearing By Footing Weight<br>Soil Passive Resistance (for Sliding)<br>Soil/Concrete Friction Coeff. | =<br>=<br>= | 1.50 ksf<br>No<br>250.0 pcf<br>0.30 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|
| Shear                                                                                                                                             | =                  | 0.750                                                   | Increases based on footing Depth                                                                                                                             |             |                                     |
| Alialysis Settings                                                                                                                                |                    |                                                         | Footing base depth below soil surface                                                                                                                        | =           | ft                                  |
| Min Steel % Bending Reini.                                                                                                                        | =                  |                                                         | Allow press. increase per foot of depth                                                                                                                      | =           | ksf                                 |
| Min Allow % Temp Reinf.                                                                                                                           | =                  | 0.00180                                                 | when footing base is below                                                                                                                                   | =           | ft                                  |
| Min. Overturning Safety Factor                                                                                                                    | =                  | · <b>1.0</b> : 1                                        | 5                                                                                                                                                            |             |                                     |
| Min. Sliding Safety Factor                                                                                                                        | =                  | <b>1.0</b> : 1                                          | Increases based on footing plan dimension                                                                                                                    |             |                                     |
| Add Ftg Wt for Soil Pressure                                                                                                                      | :                  | Yes                                                     | Allowable pressure increase per foot of depth                                                                                                                |             |                                     |
| Use ftg wt for stability, moments & shears                                                                                                        | :                  | Yes                                                     | when may length or width is greater than                                                                                                                     | =           | ksf                                 |
| Add Pedestal Wt for Soil Pressure                                                                                                                 | :                  | No                                                      | when max, length of width is greater than                                                                                                                    | _           | ft                                  |
| Use Pedestal wt for stability, mom & shear                                                                                                        | :                  | No                                                      |                                                                                                                                                              | _           | it                                  |
| Dimensions                                                                                                                                        |                    |                                                         |                                                                                                                                                              |             |                                     |

2.0 ft

2.0 ft



| Pedestal dimensions            |         |        |
|--------------------------------|---------|--------|
| px : parallel to X-X Axis      | =       | in     |
| pz : parallel to Z-Z Axis      | =       | in     |
| Height                         | =       | in     |
| Rebar Centerline to Edge of Co | oncrete |        |
| at Bottom of footing           | =       | 3.0 in |
|                                |         |        |

=

=



#### Reinforcing

| Bars parallel to X-X Axis<br>Number of Bars<br>Reinforcing Bar Size                                                   | =                                              | # | 2.0<br>4          |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---|-------------------|
| Bars parallel to Z-Z Axis<br>Number of Bars<br>Reinforcing Bar Size                                                   | =<br>=                                         | # | 2.0<br>4          |
| Bandwidth Distribution Ch<br>Direction Requiring Closer<br># Bars required within zone<br># Bars required on each sid | eck (ACI 15.4.4.2)<br>Separation<br>le of zone |   | n/a<br>n/a<br>n/a |
| Applied Loads                                                                                                         |                                                |   |                   |



#### D S W Ε Н Lr L P : Column Load 2.50 3.0 k = **OB** : Overburden ksf = M-xx k-ft = M-zz k-ft = V-x k = V-z k =



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. Et Engineer: Gig Harbor, WA 98332 253-857-7055 Project Descr: inc. John@HodgeEngineering.com

### **General Footing**

Lic. # : KW-06007122

24" footing - 1500 psf soil Description :

## DESIGN SUMMARY

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

| DESIGN SU    | MMARY      |                   |            |            | Design OK                  |
|--------------|------------|-------------------|------------|------------|----------------------------|
|              | Min. Ratio | Item              | Applied    | Capacity   | Governing Load Combination |
| PASS         | 0.9813     | Soil Bearing      | 1.472 ksf  | 1.50 ksf   | 0.0 deg CCW                |
| PASS         | n/a        | Overturning - X-X | 0.0 k-ft   | 0.0 k-ft   | No Overturning             |
| PASS         | n/a        | Overturning - Z-Z | 0.0 k-ft   | 0.0 k-ft   | No Overturning             |
| PASS         | n/a        | Sliding - X-X     | 0.0 k      | 0.0 k      | No Sliding                 |
| PASS         | n/a        | Sliding - Z-Z     | 0.0 k      | 0.0 k      | No Sliding                 |
| PASS         | n/a        | Uplift            | 0.0 k      | 0.0 k      | No Uplift                  |
| PASS         | 0.2570     | Z Flexure (+X)    | 1.102 k-ft | 4.288 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2570     | Z Flexure (-X)    | 1.102 k-ft | 4.288 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2570     | X Flexure (+Z)    | 1.102 k-ft | 4.288 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2570     | X Flexure (-Z)    | 1.102 k-ft | 4.288 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2938     | 1-way Shear (+X)  | 22.037 psi | 75.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2775     | 1-way Shear (-X)  | 20.813 psi | 75.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2938     | 1-way Shear (+Z)  | 22.037 psi | 75.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2775     | 1-way Shear (-Z)  | 20.813 psi | 75.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.5289     | 2-way Punching    | 79.334 psi | 150.0 psi  | +1.20D+0.50L+1.60S+1.60H   |
| Detailed Res | sults      |                   |            |            |                            |

#### Soil Bearing

| Rotation Axis &              |                 | Xecc       | Zecc      | Act         | ual Soil Bearing Str | ess @ Loc | ation         | Actual / Allow |
|------------------------------|-----------------|------------|-----------|-------------|----------------------|-----------|---------------|----------------|
| Load Combination             | Gross Allowable |            | (in)      | Bottom Left | Top Left             | Top Right | Bottom Right  | Ratio          |
| , +D+H                       |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                | 1.50            | 0.0        | 0.0       | 0.7217      | 0.7217               | 0.7217    | 0.7217        | 0.481          |
| , +D+L+H                     |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                | 1.50            | 0.0        | 0.0       | 0./21/      | 0./21/               | 0./21/    | 0.7217        | 0.481          |
| , +D+L[+H                    | 1 50            | 0.0        | 0.0       | 0 7017      | 0 7017               | 0 7017    | 0 7017        | 0.000          |
|                              | 1.50            | 0.0        | 0.0       | 0.7217      | 0.7217               | 0.7217    | 0.7217        | 0.461          |
| W.C.D nen C.C.W              | 1 50            | 0.0        | 0.0       | 1 472       | 1 472                | 1 472     | 1 472         | 0.000          |
| +D+0.750Lr+0.750L+H          | 1.00            | 0.0        | 0.0       | 1.172       | 1.172                | 1.172     | 1.172         | 0.000          |
| 0.0 deg CCW                  | 1.50            | 0.0        | 0.0       | 0.7217      | 0.7217               | 0.7217    | 0.7217        | 0.481          |
| , +D+0.750L+0.750S+H         |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                | 1.50            | 0.0        | 0.0       | 1.284       | 1.284                | 1.284     | 1.284         | 0.856          |
| , +D+0.60W+H                 | 1.50            |            |           | 0 7047      | 0 7017               | 0 7017    | 0 7017        | 0.000          |
| , 0.0 deg CCW                | 1.50            | 0.0        | 0.0       | 0.7217      | 0.7217               | 0.7217    | 0.7217        | 0.481          |
| , +D+0.70E+H                 | 1 50            | 0.0        | 0.0       | 0 7017      | 0 7017               | 0 7017    | 0 7217        | 0.000          |
| +D+0.7501 r+0.7501 +0.450W+H | 1.50            | 0.0        | 0.0       | 0.7217      | 0.7217               | 0.7217    | 0.7217        | 0.481          |
| 0.0 deg CCW                  | 1.50            | 0.0        | 0.0       | 0.7217      | 0.7217               | 0.7217    | 0.7217        | 0.481          |
| , +D+0.750L+0.750S+0.450W+H  |                 | 0.0        | 0.0       | 0.7217      | 0.7217               | 0.7217    | 0.7217        | 0.000          |
| , 0.0 deg CCW                | 1.50            | 0.0        | 0.0       | 1.284       | 1.284                | 1.284     | 1.284         | 0.856          |
| , +D+0.750L+0.750S+0.5250E+H |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                | 1.50            | 0.0        | 0.0       | 1.284       | 1.284                | 1.284     | 1.284         | 0.856          |
| , +0.60D+0.60W+0.60H         | 1 50            | 0.0        | 0.0       | 0 4000      | 0,4000               | 0 4000    | 0 4000        | 0.000          |
|                              | 1.50            | 0.0        | 0.0       | 0.4330      | 0.4330               | 0.4330    | 0.4330        | 0.289          |
| , +0.00D+0.70E+0.00H         | 1 50            | 0.0        | 0.0       | 0 4330      | 0 4330               | 0 1330    | 0 1330        | 0.000          |
|                              | 1.50            | 0.0        | 0.0       | 0.4550      | 0.4330               | 0.4550    | 0.4330        | 0.207          |
| Overturning Stability        |                 |            |           |             |                      |           |               |                |
| Rotation Axis &              |                 |            |           |             |                      |           |               | <b>a</b>       |
| Load Combination             | (               | Overturnin | ig Moment |             | Resisting Moment     | St        | ability Ratio | Status         |
| Footing Has NO Overturning   |                 |            |           |             |                      |           |               |                |
| Sliding Stability            |                 |            |           |             |                      |           |               | All units K    |
| Force Application Axis       |                 |            |           |             |                      |           |               |                |
| Load Combination             |                 | Sliding    | Force     |             | Resisting Force      | St        | ability Ratio | Status         |

Footing Has NO Sliding



ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30

Licensee : HODGE ENGINEERING INC



Project Title: Hodge Engineering Inc. 2615 Jahn Ave NW Ste. E Engineer: Project Descr: Gig Harbor, WA 98332 253-857-7055

**General Footing** 

Lic. # : KW-06007122

30" footing - 1500 psf soil Description :

#### Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015

### **General Information**

| Material Properties<br>fc : Concrete 28 day strength<br>fy : Rebar Yield<br>Ec : Concrete Elastic Modulus<br>Concrete Density<br>j Values Flexure                                           | =<br>=<br>= | 2<br>6<br>3,12<br>14<br>0 | .50 ksi<br>0.0 ksi<br>2.0 ksi<br>5.0 pcf<br>.90 | Soil Design Values<br>Allowable Soil Bearing<br>Increase Bearing By Footing Weight<br>Soil Passive Resistance (for Sliding)<br>Soil/Concrete Friction Coeff. | =<br>=<br>= | 1.50 ksf<br>No<br>250.0 pcf<br>0.30 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|
| Shear<br>Analysis Settings<br>Min Steel % Bending Reinf.<br>Min Allow % Temp Reinf.<br>Min Overturning Safety Factor                                                                        | =           | 0.7<br>=<br>=<br>=        | 250<br>0.00180<br>1.0 · 1                       | Increases based on footing Depth<br>Footing base depth below soil surface<br>Allow press. increase per foot of depth<br>when footing base is below           | =<br>=<br>= | ft<br>ksf<br>ft                     |
| Min. Sliding Safety Factor<br>Add Ftg Wt for Soil Pressure<br>Use ftg wt for stability, moments & shears<br>Add Pedestal Wt for Soil Pressure<br>Use Pedestal wt for stability, mom & shear |             | =<br>:<br>:<br>:          | 1.0 : 1<br>Yes<br>Yes<br>No<br>No               | Increases based on footing plan dimension<br>Allowable pressure increase per foot of depth<br>when max. length or width is greater than                      | =           | ksf<br>ft                           |

#### **Dimensions**

| Width parallel to X-X Axis  | = | 2.50 ft |
|-----------------------------|---|---------|
| Length parallel to Z-Z Axis | = | 2.50 ft |
| Footing Thickness           | = | 8.0 in  |

| Pedestal dimensions           |   |        |
|-------------------------------|---|--------|
| px : parallel to X-X Axis     | = | in     |
| pz : parallel to Z-Z Axis     | = | in     |
| Height                        | = | in     |
| Rebar Centerline to Edge of C |   |        |
| at Bottom of footing          | = | 3.0 in |
| •                             |   |        |

=

=

=

3.0

3.0

n/a

n/a

n/a

#

4

4



### 3 - # 4 Bars 3 - # 4 Bars X-X Section Looking to +Z

| - |       |      |    |
|---|-------|------|----|
| Λ |       |      | 40 |
|   |       | 1 12 | 15 |
|   | JIICU | LUU  | us |

Reinforcing

Bars parallel to X-X Axis Number of Bars

Bars parallel to Z-Z Axis

Number of Bars

**Reinforcing Bar Size** 

Reinforcing Bar Size

# Bars required within zone

Bandwidth Distribution Check (ACI 15.4.4.2)

**Direction Requiring Closer Separation** 

# Bars required on each side of zone

|                 |   | D   | Lr | L | S    | W | E | H    |
|-----------------|---|-----|----|---|------|---|---|------|
| P : Column Load | = | 3.0 |    |   | 5.50 |   |   | k    |
| OB : Overburden | = |     |    |   |      |   |   | ksf  |
| M-xx            | = |     |    |   |      |   |   | k-ft |
| M-zz            | = |     |    |   |      |   |   | k-ft |
| V-x             | = |     |    |   |      |   |   | k    |
| V-z             | = |     |    |   |      |   |   | k    |

Residential Footing

File = C:\Users\JOHNHO~1\DOCUME~1\ENERCA~1\2015FO~1.EC6



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. EsEngineer: Gig Harbor, WA 98332 253-857-7055 Project Descr: inc. John@HodgeEngineering.com

### **General Footing**

Lic. # : KW-06007122

30" footing - 1500 psf soil Description :

### DESIGN SUMMARY

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

| DESIGN SU   | MMARY      |                   |             |            | Design OK                  |
|-------------|------------|-------------------|-------------|------------|----------------------------|
|             | Min. Ratio | Item              | Applied     | Capacity   | Governing Load Combination |
| PASS        | 0.9713     | Soil Bearing      | 1.457 ksf   | 1.50 ksf   | 0.0 deg CCW                |
| PASS        | n/a        | Overturning - X-X | 0.0 k-ft    | 0.0 k-ft   | No Overturning             |
| PASS        | n/a        | Overturning - Z-Z | 0.0 k-ft    | 0.0 k-ft   | No Overturning             |
| PASS        | n/a        | Sliding - X-X     | 0.0 k       | 0.0 k      | No Sliding                 |
| PASS        | n/a        | Sliding - Z-Z     | 0.0 k       | 0.0 k      | No Sliding                 |
| PASS        | n/a        | Uplift            | 0.0 k       | 0.0 k      | No Uplift                  |
| PASS        | 0.3435     | Z Flexure (+X)    | 1.750 k-ft  | 5.095 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3435     | Z Flexure (-X)    | 1.750 k-ft  | 5.095 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3435     | X Flexure (+Z)    | 1.750 k-ft  | 5.095 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3435     | X Flexure (-Z)    | 1.750 k-ft  | 5.095 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.4148     | 1-way Shear (+X)  | 31.111 psi  | 75.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.4148     | 1-way Shear (-X)  | 31.111 psi  | 75.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.4148     | 1-way Shear (+Z)  | 31.111 psi  | 75.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.4148     | 1-way Shear (-Z)  | 31.111 psi  | 75.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.8507     | 2-way Punching    | 127.604 psi | 150.0 psi  | +1.20D+0.50L+1.60S+1.60H   |
| Detailed Re | sults      |                   |             |            |                            |

#### Soil Bearing

| Rotation Axis &                              |                 | Xecc       | Zecc     | Act         | ual Soil Bearing Str | ess @ Loc | ation         | Actual / Allow |
|----------------------------------------------|-----------------|------------|----------|-------------|----------------------|-----------|---------------|----------------|
| Load Combination                             | Gross Allowable |            | (in)     | Bottom Left | Top Left             | Top Right | Bottom Right  | Ratio          |
| , +D+H                                       |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                                | 1.50            | 0.0        | 0.0      | 0.5767      | 0.5767               | 0.5767    | 0.5767        | 0.385          |
| , +D+L+H                                     |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                                | 1.50            | 0.0        | 0.0      | 0.5767      | 0.5767               | 0.5767    | 0.5767        | 0.385          |
| , +D+Lr+H                                    | 1 50            | 0.0        | 0.0      | 0 57/7      | 0 57/7               | 0 57/7    | 0 57/7        | 0.000          |
|                                              | 1.50            | 0.0        | 0.0      | 0.5767      | 0.5767               | 0.5767    | 0.5767        | 0.385          |
|                                              | 1 50            | 0.0        | 0.0      | 1 /57       | 1 /57                | 1 /57     | 1 /57         | 0.000          |
| +D+0.7501 r+0.7501 +H                        | 1.50            | 0.0        | 0.0      | 1.437       | 1.457                | 1.437     | 1.457         | 0.971          |
| 0.0 deg CCW                                  | 1.50            | 0.0        | 0.0      | 0.5767      | 0.5767               | 0.5767    | 0.5767        | 0.385          |
| +D+0.750L+0.750S+H                           |                 | 0.0        | 010      | 010707      |                      | 0.07.07   | 010707        | 0.000          |
| , 0.0 deg CCW                                | 1.50            | 0.0        | 0.0      | 1.237       | 1.237                | 1.237     | 1.237         | 0.825          |
| , +D+0.60W+H                                 |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                                | 1.50            | 0.0        | 0.0      | 0.5767      | 0.5767               | 0.5767    | 0.5767        | 0.385          |
| , +D+0.70E+H                                 | 4 50            |            |          | 0 57/7      | 0 57/7               | 0 57/7    | 0 57/7        | 0.000          |
| , 0.0 ded CCW                                | 1.50            | 0.0        | 0.0      | 0.5767      | 0.5767               | 0.5767    | 0.5767        | 0.385          |
| , +D+0.750LI+0.750L+0.450W+H                 | 1 50            | 0.0        | 0.0      | 0 5747      | 0 5747               | 0 5747    | 0 5747        | 0.000          |
| , 0.0 ded CCW<br>+D+0 7501 +0 750S+0 450W/+H | 1.50            | 0.0        | 0.0      | 0.3707      | 0.3707               | 0.5767    | 0.3707        | 0.363          |
| 0.0 deg CCW                                  | 1 50            | 0.0        | 0.0      | 1 237       | 1 237                | 1 237     | 1 237         | 0.000          |
| +D+0.750I +0.750S+0.5250F+H                  | 1.00            | 0.0        | 0.0      | 1.207       | 1.207                | 1.207     | 1.207         | 0.000          |
| , 0.0 deg CCW                                | 1.50            | 0.0        | 0.0      | 1.237       | 1.237                | 1.237     | 1.237         | 0.825          |
| , +0.60D+0.60W+0.60H                         |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                                | 1.50            | 0.0        | 0.0      | 0.3460      | 0.3460               | 0.3460    | 0.3460        | 0.231          |
| , +0.60D+0.70E+0.60H                         |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                                | 1.50            | 0.0        | 0.0      | 0.3460      | 0.3460               | 0.3460    | 0.3460        | 0.231          |
| Overturning Stability                        |                 |            |          |             |                      |           |               |                |
| Rotation Axis &                              |                 |            |          |             |                      |           |               |                |
| Load Combination                             |                 | Overturnin | g Moment |             | Resisting Moment     | St        | ability Ratio | Status         |
| Footing Has NO Overturning                   |                 |            |          |             |                      |           |               |                |
| Sliding Stability                            |                 |            |          |             |                      |           |               | All units k    |
| Force Application Axis<br>Load Combination   |                 | Sliding    | Force    |             | Resisting Force      | St        | ability Ratio | Status         |
|                                              |                 |            |          |             |                      |           |               |                |

Footing Has NO Sliding





Project Title: Hodge Engineering Inc. 2615 Jahn Ave NW Ste. E Engineer: Project Descr: Gig Harbor, WA 98332 253-857-7055

Residential Footing

### **General Footing**

Lic. # : KW-06007122 36" footing - 1500 psf soil Description :

File = C:\Users\JOHNHO~1\DOCUME~1\ENERCA~1\2015FO~1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

#### Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015

### **General Information**

Width parallel to X-X Axis

| Material Properties<br>fc : Concrete 28 day strength<br>fy : Rebar Yield<br>Ec : Concrete Elastic Modulus<br>Concrete Density<br>i Values Elexure                                           | =<br>=<br>= | 2.<br>60<br>3,122<br>145<br>0. | 50 ksi<br>2.0 ksi<br>5.0 pcf<br>90 | Soil Design Values<br>Allowable Soil Bearing<br>Increase Bearing By Footing Weight<br>Soil Passive Resistance (for Sliding)<br>Soil/Concrete Friction Coeff. | =<br>=<br>= | 1.50 ksf<br>No<br>250.0 pcf<br>0.30 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|
| Shear<br>Analysis Settings<br>Min Steel % Bending Reinf.<br>Min Allow % Temp Reinf.<br>Min. Overturning Safety Factor                                                                       | =           | 0.7<br>=<br>=<br>=             | 50<br>0.00180<br>1.0 : 1           | Increases based on footing Depth<br>Footing base depth below soil surface<br>Allow press. increase per foot of depth<br>when footing base is below           | =<br>=<br>= | ft<br>ksf<br>ft                     |
| Min. Sliding Safety Factor<br>Add Ftg Wt for Soil Pressure<br>Use ftg wt for stability, moments & shears<br>Add Pedestal Wt for Soil Pressure<br>Use Pedestal wt for stability, mom & shear |             | =<br>:<br>:<br>:               | 1.0 : 1<br>Yes<br>Yes<br>No<br>No  | Increases based on footing plan dimension<br>Allowable pressure increase per foot of depth<br>when max. length or width is greater than                      | =           | ksf<br>ft                           |
| Dimensions                                                                                                                                                                                  |             |                                |                                    |                                                                                                                                                              |             |                                     |

3.0 ft

4.0

4.0

n/a

n/a

n/a

#

4

4



=

| Pedestal dimensions            |         |        |
|--------------------------------|---------|--------|
| px : parallel to X-X Axis      | =       | in     |
| pz : parallel to Z-Z Axis      | =       | in     |
| Height                         | =       | in     |
| Rebar Centerline to Edge of Co | oncrete |        |
| at Bottom of footing           | =       | 3.0 in |
|                                |         |        |

=

=

=



# 4 - # 4 Bars 4 - # 4 Bars

| -   |       | <br> |
|-----|-------|------|
| A m | bliod | de   |
| AD  | 01120 |      |
|     | P     |      |

Reinforcing

Bars parallel to X-X Axis Number of Bars

Bars parallel to Z-Z Axis

Number of Bars

**Reinforcing Bar Size** 

Reinforcing Bar Size

# Bars required within zone

# Bars required on each side of zone

Bandwidth Distribution Check (ACI 15.4.4.2) **Direction Requiring Closer Separation** 

|                                    | _      | D   | Lr | L | S   | W | E | Н            |
|------------------------------------|--------|-----|----|---|-----|---|---|--------------|
| P : Column Load<br>OB : Overburden | =<br>= | 4.0 |    |   | 8.0 |   |   | k<br>ksf     |
| M-xx<br>M-zz                       | =      |     |    |   |     |   |   | k-ft<br>k-ft |
| V-x<br>V-z                         | =      |     |    |   |     |   |   | k<br>k       |



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. Et Engineer: Gig Harbor, WA 98332 253-857-7055 Project Descr: inc. John@HodgeEngineering.com

### **General Footing**

Lic. # : KW-06007122

36" footing - 1500 psf soil Description :

## DESIGN SUMMARY

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

| DESIGN SU   | MMARY      |                   |            |             | Design OK                  |
|-------------|------------|-------------------|------------|-------------|----------------------------|
|             | Min. Ratio | Item              | Applied    | Capacity    | Governing Load Combination |
| PASS        | 0.9853     | Soil Bearing      | 1.478 ksf  | 1.50 ksf    | 0.0 deg CCW                |
| PASS        | n/a        | Overturning - X-X | 0.0 k-ft   | 0.0 k-ft    | No Overturning             |
| PASS        | n/a        | Overturning - Z-Z | 0.0 k-ft   | 0.0 k-ft    | No Overturning             |
| PASS        | n/a        | Sliding - X-X     | 0.0 k      | 0.0 k       | No Sliding                 |
| PASS        | n/a        | Sliding - Z-Z     | 0.0 k      | 0.0 k       | No Sliding                 |
| PASS        | n/a        | Uplift            | 0.0 k      | 0.0 k       | No Uplift                  |
| PASS        | 0.2452     | Z Flexure (+X)    | 2.555 k-ft | 10.424 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS        | 0.2452     | Z Flexure (-X)    | 2.555 k-ft | 10.424 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS        | 0.2452     | X Flexure (+Z)    | 2.555 k-ft | 10.424 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS        | 0.2452     | X Flexure (-Z)    | 2.555 k-ft | 10.424 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS        | 0.2103     | 1-way Shear (+X)  | 15.774 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.2103     | 1-way Shear (-X)  | 15.774 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.2103     | 1-way Shear (+Z)  | 15.774 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.2103     | 1-way Shear (-Z)  | 15.774 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3729     | 2-way Punching    | 55.934 psi | 150.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| Detailed Re | sults      |                   |            |             |                            |

#### Soil Bearing

| Rotation Axis &                             |                 | Xecc       | Zecc     | Act         | ual Soil Bearing Str | ess @ Loc | ation         | Actual / Allow |
|---------------------------------------------|-----------------|------------|----------|-------------|----------------------|-----------|---------------|----------------|
| Load Combination                            | Gross Allowable |            | (in)     | Bottom Left | Top Left             | Top Right | Bottom Right  | Ratio          |
| , +D+H                                      |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                               | 1.50            | 0.0        | 0.0      | 0.5894      | 0.5894               | 0.5894    | 0.5894        | 0.393          |
| , +D+L+H                                    |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                               | 1.50            | 0.0        | 0.0      | 0.5894      | 0.5894               | 0.5894    | 0.5894        | 0.393          |
| , +D+LI+H                                   | 1 50            | 0.0        | 0.0      | 0 5004      | 0 5004               | 0 0 0 4   | 0 5004        | 0.000          |
|                                             | 1.50            | 0.0        | 0.0      | 0.5894      | 0.3894               | 0.5894    | 0.5894        | 0.393          |
| W12 nab 0 0                                 | 1 50            | 0.0        | 0.0      | 1 478       | 1 478                | 1 478     | 1 478         | 0.000          |
| +D+0.7501 r+0.7501 +H                       | 1.50            | 0.0        | 0.0      | 1.470       | 1.470                | 1.470     | 1.470         | 0.705          |
| 0.0 deg CCW                                 | 1.50            | 0.0        | 0.0      | 0.5894      | 0.5894               | 0.5894    | 0.5894        | 0.393          |
| , +D+0.750L+0.750S+H                        |                 | 0.0        | 010      | 010071      | 010071               | 0.007.1   | 010071        | 0.000          |
| , 0.0 deg CCW                               | 1.50            | 0.0        | 0.0      | 1.256       | 1.256                | 1.256     | 1.256         | 0.837          |
| , +D+0.60W+H                                |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                               | 1.50            | 0.0        | 0.0      | 0.5894      | 0.5894               | 0.5894    | 0.5894        | 0.393          |
| , +D+0.70E+H                                | 1 50            | 0.0        | 0.0      | 0 500 4     | 0 5004               | 0 500 4   | 0 500 4       | 0.000          |
|                                             | 1.50            | 0.0        | 0.0      | 0.5894      | 0.5894               | 0.5894    | 0.5894        | 0.393          |
| , +D+0.750L1+0.750L+0.450W+H                | 1 50            | 0.0        | 0.0      | 0 5 9 0 /   | 0 5001               | 0 5001    | 0 5004        | 0.000          |
| , 0.0 deg CCW<br>+D+0 750L+0 750S+0 450W/+H | 1.50            | 0.0        | 0.0      | 0.3094      | 0.3094               | 0.3094    | 0.0094        | 0.373          |
| 0.0 deg CCW                                 | 1 50            | 0.0        | 0.0      | 1 256       | 1 256                | 1 256     | 1 256         | 0.000          |
| +D+0.750L+0.750S+0.5250E+H                  | 1.00            | 0.0        | 0.0      | 1.200       | 1.200                | 1.200     | 1.200         | 0.000          |
| , 0.0 deg CCW                               | 1.50            | 0.0        | 0.0      | 1.256       | 1.256                | 1.256     | 1.256         | 0.837          |
| , +0.60D+0.60W+0.60H                        |                 |            |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                               | 1.50            | 0.0        | 0.0      | 0.3537      | 0.3537               | 0.3537    | 0.3537        | 0.236          |
| , +0.60D+0.70E+0.60H                        | . = .           |            |          |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                               | 1.50            | 0.0        | 0.0      | 0.3537      | 0.3537               | 0.3537    | 0.3537        | 0.236          |
| Overturning Stability                       |                 |            |          |             |                      |           |               |                |
| Rotation Axis &                             |                 |            |          |             |                      |           |               |                |
| Load Combination                            | (               | Dverturnin | g Moment |             | Resisting Moment     | Sta       | ability Ratio | Status         |
| Footing Has NO Overturning                  |                 |            |          |             |                      |           |               |                |
| Sliding Stability                           |                 |            |          |             |                      |           |               | All units k    |
| Force Application Axis                      |                 |            | _        |             |                      | _         |               |                |
| Load Combination                            |                 | Sliding    | Force    |             | Resisting Force      | St        | ability Ratio | Status         |

Footing Has NO Sliding





Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. E Engineer: Gig Harbor, WA 98332 Project Descr: 253-857-7055

### **General Footing**

Lic. # : KW-06007122 42" footing - 1500 psf soil Description :

### Residential Footing File = C:\Users\JOHNHO~1\DOCUME~1\ENERCA~1\2015FO~1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015

### **General Information**

| Material Properties<br>fc : Concrete 28 day strength<br>fy : Rebar Yield<br>Ec : Concrete Elastic Modulus<br>Concrete Density<br>j Values Flexure                                           | =<br>=<br>=<br>= | 2<br>6<br>3,12<br>14 | .50 ksi<br>0.0 ksi<br>2.0 ksi<br>5.0 pcf<br>.90 | Soil Design Values<br>Allowable Soil Bearing<br>Increase Bearing By Footing Weight<br>Soil Passive Resistance (for Sliding)<br>Soil/Concrete Friction Coeff. | =<br>=<br>= | 1.50 ksf<br>No<br>250.0 pcf<br>0.30 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|
| Shear<br>Analysis Settings<br>Min Steel % Bending Reinf.<br>Min Allow % Temp Reinf.<br>Min. Overturning Safety Factor                                                                       | =                | 0.7<br>=<br>=<br>=   | 0.00180<br>1.0 : 1                              | Increases based on footing Depth<br>Footing base depth below soil surface<br>Allow press. increase per foot of depth<br>when footing base is below           | =<br>=<br>= | ft<br>ksf<br>ft                     |
| Min. Sliding Safety Factor<br>Add Ftg Wt for Soil Pressure<br>Use ftg wt for stability, moments & shears<br>Add Pedestal Wt for Soil Pressure<br>Use Pedestal wt for stability, mom & shear |                  | = : : : :            | 1.0 : 1<br>Yes<br>Yes<br>No<br>No               | Increases based on footing plan dimension<br>Allowable pressure increase per foot of depth<br>when max. length or width is greater than                      | =           | ksf<br>ft                           |

#### **Dimensions**

| Width parallel to X-X Axis  | = | 3.50 ft |
|-----------------------------|---|---------|
| Length parallel to Z-Z Axis | = | 3.50 ft |
| Footing Thickness           | = | 12.0 in |

| Pedestal dimensions            |         |        |
|--------------------------------|---------|--------|
| px : parallel to X-X Axis      | =       | in     |
| pz : parallel to Z-Z Axis      | =       | in     |
| Height                         | =       | in     |
| Rebar Centerline to Edge of Co | oncrete |        |
| at Bottom of footing           | =       | 3.0 in |



#### Reinforcing

| Bars parallel to X-X Axis<br>Number of Bars<br>Reinforcing Bar Size                                                    | =                                                    | # | 5.0<br>4          |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---|-------------------|
| Bars parallel to Z-Z Axis<br>Number of Bars<br>Reinforcing Bar Size                                                    | =<br>=                                               | # | 5.0<br>4          |
| Bandwidth Distribution Ch<br>Direction Requiring Closer<br># Bars required within zone<br># Bars required on each side | neck (ACI 15.4.4.2)<br>Separation<br>e<br>de of zone |   | n/a<br>n/a<br>n/a |
| Applied Loads                                                                                                          |                                                      |   |                   |



#### S W Ε Н D Lr L 6.50 10.0 P : Column Load k = **OB** : Overburden ksf = M-xx k-ft = M-zz k-ft = V-x k = V-z k =



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. EsEngineer: Gig Harbor, WA 98332 253-857-7055 Project Descr: inc. John@HodgeEngineering.com

### **General Footing**

Lic. # : KW-06007122

42" footing - 1500 psf soil Description :

## DESIGN SUMMARY

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

| DESIGN SU    | MMARY      |                   |            |             | Design OK                  |
|--------------|------------|-------------------|------------|-------------|----------------------------|
|              | Min. Ratio | Item              | Applied    | Capacity    | Governing Load Combination |
| PASS         | 0.9947     | Soil Bearing      | 1.492 ksf  | 1.50 ksf    | 0.0 deg CCW                |
| PASS         | n/a        | Overturning - X-X | 0.0 k-ft   | 0.0 k-ft    | No Overturning             |
| PASS         | n/a        | Overturning - Z-Z | 0.0 k-ft   | 0.0 k-ft    | No Overturning             |
| PASS         | n/a        | Sliding - X-X     | 0.0 k      | 0.0 k       | No Sliding                 |
| PASS         | n/a        | Sliding - Z-Z     | 0.0 k      | 0.0 k       | No Sliding                 |
| PASS         | n/a        | Uplift            | 0.0 k      | 0.0 k       | No Uplift                  |
| PASS         | 0.3104     | Z Flexure (+X)    | 3.458 k-ft | 11.139 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.3104     | Z Flexure (-X)    | 3.458 k-ft | 11.139 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.3104     | X Flexure (+Z)    | 3.458 k-ft | 11.139 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.3104     | X Flexure (-Z)    | 3.458 k-ft | 11.139 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2764     | 1-way Shear (+X)  | 20.733 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2764     | 1-way Shear (-X)  | 20.733 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2764     | 1-way Shear (+Z)  | 20.733 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.2764     | 1-way Shear (-Z)  | 20.733 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.5122     | 2-way Punching    | 76.834 psi | 150.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| Detailed Res | sults      |                   |            |             |                            |

#### Soil Bearing

| Rotation Axis &                            |                 | Хесс       | Zecc      | Actu        | ual Soil Bearing Str | ess @ Loo | ation         | Actual / Allow |
|--------------------------------------------|-----------------|------------|-----------|-------------|----------------------|-----------|---------------|----------------|
| Load Combination                           | Gross Allowable |            | (in)      | Bottom Left | Top Left             | Top Right | Bottom Right  | Ratio          |
| +D+H                                       |                 |            |           |             | ·                    |           |               | 0.000          |
| 0.0 deg CCW                                | 1.50            | 0.0        | 0.0       | 0.6756      | 0.6756               | 0.6756    | 0.6756        | 0.450          |
| , +D+L+H                                   |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                              | 1.50            | 0.0        | 0.0       | 0.6756      | 0.6756               | 0.6756    | 0.6756        | 0.450          |
| , +D+Lr+H                                  |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                              | 1.50            | 0.0        | 0.0       | 0.6756      | 0.6756               | 0.6756    | 0.6756        | 0.450          |
| , +D+S+H                                   | 1 50            | 0.0        | 0.0       | 1 400       | 1 400                | 1 400     | 1 400         | 0.000          |
|                                            | 1.50            | 0.0        | 0.0       | 1.492       | 1.492                | 1.492     | 1.492         | 0.995          |
| , +D+0.730L1+0.730L+H                      | 1 50            | 0.0        | 0.0       | 0 6756      | 0.6756               | 0 6756    | 0 6756        | 0.000          |
| +D+0.7501+0.750S+H                         | 1.50            | 0.0        | 0.0       | 0.0750      | 0.0750               | 0.0750    | 0.0750        | 0.430          |
| 0.0 deg CCW                                | 1.50            | 0.0        | 0.0       | 1.288       | 1.288                | 1.288     | 1.288         | 0.859          |
| , +D+0.60W+H                               |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                              | 1.50            | 0.0        | 0.0       | 0.6756      | 0.6756               | 0.6756    | 0.6756        | 0.450          |
| , +D+0.70E+H                               |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                              | 1.50            | 0.0        | 0.0       | 0.6756      | 0.6756               | 0.6756    | 0.6756        | 0.450          |
| , +D+0./50Lr+0./50L+0.450W+H               | 1 50            | 0.0        | 0.0       | 0 / 75 /    | 0 / 75 /             | 0 (75)    | 0 /75/        | 0.000          |
|                                            | 1.50            | 0.0        | 0.0       | 0.6756      | 0.6756               | 0.6756    | 0.6756        | 0.450          |
| , +D+0.750L+0.750S+0.450W+H                | 1 50            | 0.0        | 0.0       | 1 200       | 1 200                | 1 200     | 1 200         | 0.000          |
| +D+0.7501+0.750S+0.5250F+H                 | 1.50            | 0.0        | 0.0       | 1.200       | 1.200                | 1.200     | 1.200         | 0.037          |
| 0.0 deg CCW                                | 1.50            | 0.0        | 0.0       | 1,288       | 1,288                | 1,288     | 1,288         | 0.859          |
| +0.60D+0.60W+0.60H                         |                 | 010        | 010       |             | 11200                |           | 11200         | 0.000          |
| , 0.0 deg CCW                              | 1.50            | 0.0        | 0.0       | 0.4054      | 0.4054               | 0.4054    | 0.4054        | 0.270          |
| , +0.60D+0.70E+0.60H                       |                 |            |           |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                              | 1.50            | 0.0        | 0.0       | 0.4054      | 0.4054               | 0.4054    | 0.4054        | 0.270          |
| Overturning Stability                      |                 |            |           |             |                      |           |               |                |
| Rotation Axis &                            |                 |            |           |             |                      |           |               |                |
| Load Combination                           |                 | Overturnin | ig Moment |             | Resisting Moment     | St        | ability Ratio | Status         |
| Footing Has NO Overturning                 |                 |            |           |             |                      |           |               |                |
| Sliding Stability                          |                 |            |           |             |                      |           |               | All units k    |
| Force Application Axis<br>Load Combination |                 | Sliding    | Force     |             | Resisting Force      | St        | ability Ratio | Status         |
| Feeting Llee NO Cliding                    |                 |            |           |             |                      |           |               |                |

Footing Has NO Sliding





Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. E Engineer: Gig Harbor, WA 98332 Project Descr: 253-857-7055

### **General Footing**

Lic. # : KW-06007122 48" footing - 1500 psf soil Description :

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

#### Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015

### **General Information**

| Material Properties<br>fc : Concrete 28 day strength<br>fy : Rebar Yield<br>Ec : Concrete Elastic Modulus<br>Concrete Density<br>j Values Flexure<br>Shear<br>Analysis Settings<br>Min Steel % Bending Reinf.<br>Min Allow % Temp Reinf.<br>Min. Overturning Safety Factor<br>Min. Sliding Safety Factor<br>Add Ftg Wt for Soil Pressure<br>Use ftg wt for stability, momen<br>Add Pedestal Wt for Soil Press<br>Use Pedestal wt for stability, n | s<br>r<br>nts & shears<br>sure<br>nom & shear | = 2<br>= 6<br>= 3,12<br>= 14<br>= 0.<br>= 0.<br>= =<br>= =<br>:<br>:<br>: | 2.50 ksi<br>50.0 ksi<br>22.0 ksi<br>45.0 pcf<br>0.90<br>750<br>0.00180<br>1.0 : 1<br>1.0 : 1<br>No<br>Yes<br>No<br>No | Soil Design Values<br>Allowable Soil Bearing<br>Increase Bearing By Footing Weight<br>Soil Passive Resistance (for Sliding)<br>Soil/Concrete Friction Coeff.<br>Increases based on footing Depth<br>Footing base depth below soil surface<br>Allow press. increase per foot of depth<br>when footing base is below<br>Increases based on footing plan dimension<br>Allowable pressure increase per foot of depth<br>when max. length or width is greater than |                    | 1.50 ksf<br>No<br>250.0 pcf<br>0.30<br>ft<br>ksf<br>ft<br>ksf |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------|
| Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                                                           |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                               |
| Width parallel to X-X Axis<br>Length parallel to Z-Z Axis<br>Footing Thickness<br>Pedestal dimensions<br>px : parallel to X-X Axis<br>pz : parallel to Z-Z Axis<br>Height<br>Rebar Centerline to Edge of Con<br>at Bottom of footing                                                                                                                                                                                                              | =<br>=<br>=<br>=<br>crete                     | 4.0<br>3.50<br>12.0<br>3.0                                                | ft<br>ft<br>in<br>in<br>in<br>in                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × Edge Dist. = 3   |                                                               |
| Reinforcing                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                                                           |                                                                                                                       | 4' <del>j</del> 0"                                                                                                                                                                                                                                                                                                                                                                                                                                            | ω                  |                                                               |
| Bars parallel to X-X Axis<br>Number of Bars<br>Reinforcing Bar Size<br>Bars parallel to Z-Z Axis<br>Number of Bars<br>Reinforcing Bar Size                                                                                                                                                                                                                                                                                                        | =<br>=<br>=                                   | 6.0<br># 4<br>6.0<br># 4                                                  | ie -                                                                                                                  | 6 - # 4 Bars                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 - # 4 Ba         | //S                                                           |
| Bandwidth Distribution Check<br>Direction Requiring Closer Sep<br># Bars required within zone<br># Bars required on each side of                                                                                                                                                                                                                                                                                                                  | (ACI 15.4.4.2<br>aration<br>zone              | 2)<br>ng Z-Z Axis<br>93.3 %<br>6.7 %                                      | <u>0</u>                                                                                                              | X-X Section Looking to +2                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z-Z Section Lookin | JU-14                                                         |

#### **Applied Loads**

|                 |   | D   | Lr | L | S    | W | E | H    |
|-----------------|---|-----|----|---|------|---|---|------|
| P : Column Load | = | 8.0 |    |   | 13.0 |   |   | k    |
| OB : Overburden | = |     |    |   |      |   |   | ksf  |
| M-xx            | = |     |    |   |      |   |   | k-ft |
| M-zz            | = |     |    |   |      |   |   | k-ft |
| V-x             | = |     |    |   |      |   |   | k    |
| V-z             | = |     |    |   |      |   |   | k    |



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. EsEngineer: Gig Harbor, WA 98332 253-857-7055 Project Descr: inc. John@HodgeEngineering.com

### **General Footing**

Lic. # : KW-06007122

48" footing - 1500 psf soil Description :

## DESIGN SUMMARY

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

| DESIGN SU   | IMMARY     |                   |            |             | Design OK                  |
|-------------|------------|-------------------|------------|-------------|----------------------------|
|             | Min. Ratio | Item              | Applied    | Capacity    | Governing Load Combination |
| PASS        | 1.0        | Soil Bearing      | 1.50 ksf   | 1.50 ksf    | 0.0 deg CCW                |
| PASS        | n/a        | Overturning - X-X | 0.0 k-ft   | 0.0 k-ft    | No Overturning             |
| PASS        | n/a        | Overturning - Z-Z | 0.0 k-ft   | 0.0 k-ft    | No Overturning             |
| PASS        | n/a        | Sliding - X-X     | 0.0 k      | 0.0 k       | No Sliding                 |
| PASS        | n/a        | Sliding - Z-Z     | 0.0 k      | 0.0 k       | No Sliding                 |
| PASS        | n/a        | Uplift            | 0.0 k      | 0.0 k       | No Uplift                  |
| PASS        | 0.3493     | Z Flexure (+X)    | 4.632 k-ft | 13.263 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3493     | Z Flexure (-X)    | 4.632 k-ft | 13.263 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3038     | X Flexure (+Z)    | 3.547 k-ft | 11.674 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS        | 0.3038     | X Flexure (-Z)    | 3.547 k-ft | 11.674 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS        | 0.3622     | 1-way Shear (+X)  | 27.165 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3622     | 1-way Shear (-X)  | 27.165 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.2836     | 1-way Shear (+Z)  | 21.267 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.2836     | 1-way Shear (-Z)  | 21.267 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.6005     | 2-way Punching    | 90.074 psi | 150.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| Detailed Re | sults      |                   |            |             |                            |

#### Soil Bearing

| Rotation Axis &              |                 | Xecc        | Zecc     | Act         | ual Soil Bearing Str | ess @ Loc | ation         | Actual / Allow |
|------------------------------|-----------------|-------------|----------|-------------|----------------------|-----------|---------------|----------------|
| Load Combination             | Gross Allowable | (           | (in)     | Bottom Left | Top Left             | Top Right | Bottom Right  | Ratio          |
| , +D+H                       |                 |             |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                | 1.50            | 0.0         | 0.0      | 0.5714      | 0.5714               | 0.5714    | 0.5714        | 0.381          |
| , +D+L+H                     |                 |             |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                | 1.50            | 0.0         | 0.0      | 0.5714      | 0.5714               | 0.5714    | 0.5714        | 0.381          |
| , +D+Lr+H                    | 1 50            | 0.0         | 0.0      | 0 5714      | 0 5714               | 0 5 7 1 4 | 0 5714        | 0.000          |
|                              | 1.50            | 0.0         | 0.0      | 0.5714      | 0.5714               | 0.5714    | 0.5714        | 0.381          |
| , +D+O+D<br>W                | 1 50            | 0.0         | 0.0      | 1 50        | 1 50                 | 1 50      | 1 50          | 1 000          |
| +D+0 7501 r+0 7501 +H        | 1.50            | 0.0         | 0.0      | 1.50        | 1.50                 | 1.50      | 1.50          | 0.000          |
| 0.0 deg CCW                  | 1.50            | 0.0         | 0.0      | 0.5714      | 0.5714               | 0.5714    | 0.5714        | 0.381          |
| , +D+0.750L+0.750S+H         |                 |             |          |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                | 1.50            | 0.0         | 0.0      | 1.268       | 1.268                | 1.268     | 1.268         | 0.845          |
| , +D+0.60W+H                 |                 |             |          |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                | 1.50            | 0.0         | 0.0      | 0.5714      | 0.5714               | 0.5714    | 0.5714        | 0.381          |
| , +D+0.70E+H                 | 1 50            | 0.0         | 0.0      | 0 5714      | 0 5714               | 0 5714    | 0 5714        | 0.000          |
|                              | 1.50            | 0.0         | 0.0      | 0.5714      | 0.5714               | 0.5714    | 0.5714        | 0.381          |
| , +D+0.750L1+0.750L+0.450W+H | 1 50            | 0.0         | 0.0      | 0 571/      | 0 571/               | 0 571/    | 0 571/        | 0.000          |
| +D+0 7501 +0 750S+0 450W+H   | 1.50            | 0.0         | 0.0      | 0.5714      | 0.3714               | 0.5714    | 0.5714        | 0.000          |
| 0.0 deg CCW                  | 1.50            | 0.0         | 0.0      | 1.268       | 1.268                | 1.268     | 1.268         | 0.845          |
| , +D+0.750L+0.750S+0.5250E+H |                 |             |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                | 1.50            | 0.0         | 0.0      | 1.268       | 1.268                | 1.268     | 1.268         | 0.845          |
| , +0.60D+0.60W+0.60H         |                 |             |          |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                | 1.50            | 0.0         | 0.0      | 0.3429      | 0.3429               | 0.3429    | 0.3429        | 0.229          |
| , +0.60D+0.70E+0.60H         | 1 50            | 0.0         | 0.0      | 0 2 4 2 0   | 0.2420               | 0 2 4 2 0 | 0.2420        | 0.000          |
| , 0.0 ded CCW                | 1.50            | 0.0         | 0.0      | 0.3429      | 0.3429               | 0.3429    | 0.3429        | 0.229          |
| Overturning Stability        |                 |             |          |             |                      |           |               |                |
| Rotation Axis &              |                 |             |          |             |                      |           |               |                |
| Load Combination             | (               | Overturning | g Moment |             | Resisting Moment     | St        | ability Ratio | Status         |
| Footing Has NO Overturning   |                 |             |          |             |                      |           |               |                |
| Sliding Stability            |                 |             |          |             |                      |           |               | All units k    |
| Force Application Axis       |                 |             |          |             |                      |           |               |                |
| Load Combination             |                 | Sliding     | Force    |             | Resisting Force      | St        | ability Ratio | Status         |
|                              |                 |             |          |             |                      |           |               |                |

Footing Has NO Sliding



Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6

ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30

Licensee : HODGE ENGINEERING INC



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. E Engineer: Project Descr: Gig Harbor, WA 98332 253-857-7055

**General Footing** 

Lic. # : KW-06007122

54" footing - 1500 psf soil Description :

#### Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015

### **General Information**

Width parallel to X-X Axis

Length parallel to Z-Z Axis

at Bottom of footing

Rebar Centerline to Edge of Concrete...

| Material Properties<br>fc : Concrete 28 day strength<br>fy : Rebar Yield<br>Ec : Concrete Elastic Modulus<br>Concrete Density<br>i Values Flexure                                           | =<br>=<br>=<br>= | 2.:<br>60<br>3,122<br>145<br>0.: | 50 ksi<br>2.0 ksi<br>2.0 ksi<br>5.0 pcf<br>90 | Soil Design Values<br>Allowable Soil Bearing<br>Increase Bearing By Footing Weight<br>Soil Passive Resistance (for Sliding)<br>Soil/Concrete Friction Coeff. | =<br>=<br>= | 1.50 ksf<br>No<br>250.0 pcf<br>0.30 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|
| Shear<br>Analysis Settings<br>Min Steel % Bending Reinf.<br>Min Allow % Temp Reinf.<br>Min. Overturning Safety Factor                                                                       | =                | 0.7<br>=<br>=<br>=               | 50<br>0.00180<br>1.0 : 1                      | Increases based on footing Depth<br>Footing base depth below soil surface<br>Allow press. increase per foot of depth<br>when footing base is below           | =<br>=<br>= | ft<br>ksf<br>ft                     |
| Min. Sliding Safety Factor<br>Add Ftg Wt for Soil Pressure<br>Use ftg wt for stability, moments & shears<br>Add Pedestal Wt for Soil Pressure<br>Use Pedestal wt for stability, mom & shear |                  | = : : : :                        | 1.0 : 1<br>No<br>Yes<br>No<br>No              | Increases based on footing plan dimension<br>Allowable pressure increase per foot of depth<br>when max. length or width is greater than                      | =           | ksf<br>ft                           |
| Dimensions                                                                                                                                                                                  |                  |                                  |                                               |                                                                                                                                                              |             |                                     |

4.50 ft

4.0 ft

3.0 in

| Footing Thickness         | = | 12.0 in |
|---------------------------|---|---------|
|                           |   |         |
|                           |   |         |
| Pedestal dimensions       |   |         |
| px : parallel to X-X Axis | = | in      |
| pz : parallel to Z-Z Axis | = | in      |
| Height                    |   | in      |

=

=



### Reinforcing

| Bars parallel to X-X Axis<br>Number of Bars<br>Reinforcing Bar Size | =      | # | 7.0<br>4 |
|---------------------------------------------------------------------|--------|---|----------|
| Bars parallel to Z-Z Axis<br>Number of Bars<br>Reinforcing Bar Size | =<br>= | # | 7.0<br>4 |
| Bandwidth Distribution                                              |        |   |          |

| _                                         |                           | <br> |              |          |
|-------------------------------------------|---------------------------|------|--------------|----------|
|                                           | 7 - # 4 Bars              |      | 7 - # 4 Bars |          |
| le la | X-X Section Looking to +Z | m    |              | <u>.</u> |

| Applied Loads                          |             |
|----------------------------------------|-------------|
| # Bars required on each side of zone   | 5.9 %       |
| # Bars required within zone            | 94.1 %      |
| Direction Requiring Closer Separation  | ng Z-Z Axis |
| Bandwidth Distribution Check (ACI 15.4 | .4.2)       |

|                                    |   | D   | Lr | L | S    | W | Е | Н            |
|------------------------------------|---|-----|----|---|------|---|---|--------------|
| P : Column Load<br>OB : Overburden | = | 9.0 |    |   | 18.0 |   |   | k<br>ksf     |
| M-xx<br>M-zz                       | = |     |    |   |      |   |   | k-ft<br>k-ft |
| V-x<br>V-z                         | = |     |    |   |      |   |   | k<br>k       |



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. Et Engineer: Gig Harbor, WA 98332 253-857-7055 Project Descr: inc. John@HodgeEngineering.com

### **General Footing**

Lic. # : KW-06007122

54" footing - 1500 psf soil Description :

### DESIGN SUMMARY

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

| DESIGN SU    | MMARY      |                   |             |             | Design OK                  |
|--------------|------------|-------------------|-------------|-------------|----------------------------|
|              | Min. Ratio | Item              | Applied     | Capacity    | Governing Load Combination |
| PASS         | 1.0        | Soil Bearing      | 1.50 ksf    | 1.50 ksf    | 0.0 deg CCW                |
| PASS         | n/a        | Overturning - X-X | 0.0 k-ft    | 0.0 k-ft    | No Overturning             |
| PASS         | n/a        | Overturning - Z-Z | 0.0 k-ft    | 0.0 k-ft    | No Overturning             |
| PASS         | n/a        | Sliding - X-X     | 0.0 k       | 0.0 k       | No Sliding                 |
| PASS         | n/a        | Sliding - Z-Z     | 0.0 k       | 0.0 k       | No Sliding                 |
| PASS         | n/a        | Uplift            | 0.0 k       | 0.0 k       | No Uplift                  |
| PASS         | 0.4391     | Z Flexure (+X)    | 5.940 k-ft  | 13.526 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.4391     | Z Flexure (-X)    | 5.940 k-ft  | 13.526 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.3883     | X Flexure (+Z)    | 4.693 k-ft  | 12.088 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS         | 0.3883     | X Flexure (-Z)    | 4.693 k-ft  | 12.088 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS         | 0.4346     | 1-way Shear (+X)  | 32.593 psi  | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.4346     | 1-way Shear (-X)  | 32.593 psi  | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.3670     | 1-way Shear (+Z)  | 27.523 psi  | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.3670     | 1-way Shear (-Z)  | 27.523 psi  | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS         | 0.7877     | 2-way Punching    | 118.148 psi | 150.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| Detailed Res | sults      |                   |             |             |                            |

#### Soil Bearing

| Rotation Axis &                               | Gross Allowable | Xecc       | Zecc       | Actua<br>Bottom Left | al Soil Bearing St | ress @ Loc<br>Top Right | ation<br>Bottom Right | Actual / Allow |
|-----------------------------------------------|-----------------|------------|------------|----------------------|--------------------|-------------------------|-----------------------|----------------|
|                                               | GIUSS Allowable | (1)        | <i>'</i> y | DOLIOITI LEIL        |                    | TOP RIGHT               | Dottorn Right         | Kallu          |
| , +D+H<br>, 0.0 dea CCW                       | 1.50            | 0.0        | 0.0        | 0.50                 | 0.50               | 0.50                    | 0.50                  | 0.000<br>0.333 |
| , +D+L+H<br>, 0.0 deg CCW                     | 1.50            | 0.0        | 0.0        | 0.50                 | 0.50               | 0.50                    | 0.50                  | 0.000          |
| , 0.0 dea CCW<br>+D+S+H                       | 1.50            | 0.0        | 0.0        | 0.50                 | 0.50               | 0.50                    | 0.50                  | 0.333          |
| , 0.0 dea CCW<br>, +D+0.750Lr+0.750L+H        | 1.50            | 0.0        | 0.0        | 1.50                 | 1.50               | 1.50                    | 1.50                  | 1.000          |
| , 0.0 dea CCW<br>, +D+0.750L+0.750S+H         | 1.50            | 0.0        | 0.0        | 0.50                 | 0.50               | 0.50                    | 0.50                  | 0.333<br>0.000 |
| , 0.0 dea CCW<br>, +D+0.60W+H                 | 1.50            | 0.0        | 0.0        | 1.250                | 1.250              | 1.250                   | 1.250                 | 0.833<br>0.000 |
| , 0.0 dea CCW<br>, +D+0.70E+H                 | 1.50            | 0.0        | 0.0        | 0.50                 | 0.50               | 0.50                    | 0.50                  | 0.333<br>0.000 |
| , 0.0 dea CCW<br>, +D+0.750Lr+0.750L+0.450W+H | 1.50            | 0.0        | 0.0        | 0.50                 | 0.50               | 0.50                    | 0.50                  | 0.333<br>0.000 |
| , 0.0 dea CCW<br>, +D+0.750L+0.750S+0.450W+H  | 1.50            | 0.0        | 0.0        | 0.50                 | 0.50               | 0.50                    | 0.50                  | 0.333<br>0.000 |
| , 0.0 dea CCW<br>, +D+0.750L+0.750S+0.5250E+H | 1.50            | 0.0        | 0.0        | 1.250                | 1.250              | 1.250                   | 1.250                 | 0.833<br>0.000 |
| , 0.0 deg CCW<br>, +0.60D+0.60W+0.60H         | 1.50            | 0.0        | 0.0        | 1.250                | 1.250              | 1.250                   | 1.250                 | 0.833<br>0.000 |
| , 0.0 deg CCW<br>, +0.60D+0.70E+0.60H         | 1.50            | 0.0        | 0.0        | 0.30                 | 0.30               | 0.30                    | 0.30                  | 0.200<br>0.000 |
| , 0.0 deg CCW                                 | 1.50            | 0.0        | 0.0        | 0.30                 | 0.30               | 0.30                    | 0.30                  | 0.200          |
|                                               |                 |            |            |                      |                    |                         |                       |                |
| Load Combination                              | C               | Verturning | Moment     |                      | Resisting Momen    | t Sta                   | ability Ratio         | Status         |
| Footing Has NO Overturning                    |                 |            |            |                      |                    |                         |                       | All upite k    |
| Sliding Stability                             |                 |            |            |                      |                    |                         |                       |                |
| Force Application Axis<br>Load Combination    |                 | Sliding F  | orce       |                      | Resisting Force    | Sta                     | ability Ratio         | Status         |

Footing Has NO Sliding





Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. E Engineer: Project Descr: Gig Harbor, WA 98332 253-857-7055

Residential Footing

### **General Footing**

Lic. # : KW-06007122 60" footing - 1500 psf soil Description :

File = C:\Users\JOHNHO~1\DOCUME~1\ENERCA~1\2015FO~1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

#### Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015

### **General Information**

Width parallel to X-X Axis

Length parallel to Z-Z Axis

Reinforcing

Bars parallel to X-X Axis Number of Bars

Bars parallel to Z-Z Axis

Number of Bars

**Reinforcing Bar Size** 

Reinforcing Bar Size

| Material Properties<br>fc : Concrete 28 day strength       | = | 2.50 ksi          | Soil Design Values<br>Allowable Soil Bearing  | = | 1.50 ksf  |
|------------------------------------------------------------|---|-------------------|-----------------------------------------------|---|-----------|
| ty : Rebar Yield<br>Ec : Concrete Elastic Modulus          | = | 3,122.0 ksi       | Soil Passive Resistance (for Sliding)         | = | 250.0 pcf |
| Concrete Density<br>j Values Flexure                       | = | 145.0 pcf<br>0.90 | Soil/Concrete Friction Coeff.                 | = | 0.30      |
| Shear<br>Analysis Settings                                 | = | 0.750             | Increases based on footing Depth              |   | 8         |
| Min Steel % Bending Reinf.                                 |   | =                 | Allow press. increase per foot of depth       | = | ksf       |
| Min. Overturning Safety Factor                             |   | = 1.0 : 1         | when footing base is below                    | = | π         |
| Min. Sliding Safety Factor<br>Add Ftg Wt for Soil Pressure |   | = 1.0 : 1<br>: No | Allowable pressure increase per foot of depth |   |           |
| Use ftg wt for stability, moments & shears                 |   | : Yes             | when max. length or width is greater than     | = | ksf       |
| Use Pedestal wt for stability, mom & shear                 |   | : No              |                                               | = | ft        |
| Dimensions                                                 |   |                   |                                               |   |           |

5.0 ft

4.50 ft

8.0

8.0

#

4

4

| Footing Thickness              | =       | 14.0 in |
|--------------------------------|---------|---------|
|                                |         |         |
|                                |         |         |
|                                |         |         |
| Pedestal dimensions            |         |         |
| px : parallel to X-X Axis      | =       | in      |
| pz : parallel to Z-Z Axis      | =       | in      |
| Height                         | -       | in      |
| Rebar Centerline to Edge of Co | oncrete |         |
| at Bottom of footing           | =       | 3.0 jn  |

=

=

=

=

=

=





| Bandwidth Distribution Check (ACI 15.4.4 | .2)         |
|------------------------------------------|-------------|
| Direction Requiring Closer Separation    | ig Z-Z Axis |
| # Bars required within zone              | 94.7 %      |
| # Bars required on each side of zone     | 5.3 %       |
| Applied Loads                            |             |

|                                    |        | D    | Lr | L | S    | W | E | Н            |
|------------------------------------|--------|------|----|---|------|---|---|--------------|
| P : Column Load<br>OB : Overburden | =<br>= | 10.0 |    |   | 23.0 |   |   | k<br>ksf     |
| M-xx<br>M-zz                       | =<br>= |      |    |   |      |   |   | k-ft<br>k-ft |
| V-x<br>V-z                         | =      |      |    |   |      |   |   | k<br>k       |



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. EsEngineer: Gig Harbor, WA 98332 253-857-7055 Project Descr: inc. John@HodgeEngineering.com

### **General Footing**

Lic. # : KW-06007122

60" footing - 1500 psf soil Description :

### DESIGN SUMMARY

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

| DESIGN SUMMARY |            |                   |            | Design OK   |                            |
|----------------|------------|-------------------|------------|-------------|----------------------------|
|                | Min. Ratio | Item              | Applied    | Capacity    | Governing Load Combination |
| PASS           | 0.9780     | Soil Bearing      | 1.467 ksf  | 1.50 ksf    | 0.0 deg CCW                |
| PASS           | n/a        | Overturning - X-X | 0.0 k-ft   | 0.0 k-ft    | No Overturning             |
| PASS           | n/a        | Overturning - Z-Z | 0.0 k-ft   | 0.0 k-ft    | No Overturning             |
| PASS           | n/a        | Sliding - X-X     | 0.0 k      | 0.0 k       | No Sliding                 |
| PASS           | n/a        | Sliding - Z-Z     | 0.0 k      | 0.0 k       | No Sliding                 |
| PASS           | n/a        | Uplift            | 0.0 k      | 0.0 k       | No Uplift                  |
| PASS           | 0.4270     | Z Flexure (+X)    | 7.230 k-ft | 16.931 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS           | 0.4270     | Z Flexure (-X)    | 7.230 k-ft | 16.931 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS           | 0.3828     | X Flexure (+Z)    | 5.856 k-ft | 15.298 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS           | 0.3828     | X Flexure (-Z)    | 5.856 k-ft | 15.298 k-ft | +1.20D+1.60S+0.50W+1.60H   |
| PASS           | 0.370      | 1-way Shear (+X)  | 27.750 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS           | 0.370      | 1-way Shear (-X)  | 27.750 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS           | 0.3155     | 1-way Shear (+Z)  | 23.661 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS           | 0.3155     | 1-way Shear (-Z)  | 23.661 psi | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS           | 0.6453     | 2-way Punching    | 96.793 psi | 150.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| Detailed Res   | sults      |                   |            |             |                            |

#### Soil Bearing

| Rotation Axis &                            |                 | Xecc        | Zecc   | Actu        | ual Soil Bearing Str | ess @ Loo | ation         | Actual / Allow |
|--------------------------------------------|-----------------|-------------|--------|-------------|----------------------|-----------|---------------|----------------|
| Load Combination                           | Gross Allowable | (i          | n)     | Bottom Left | Top Left             | Top Right | Bottom Right  | Ratio          |
| , +D+H                                     |                 |             |        |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                              | 1.50            | 0.0         | 0.0    | 0.4444      | 0.4444               | 0.4444    | 0.4444        | 0.296          |
| , +D+L+H                                   |                 |             |        |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                              | 1.50            | 0.0         | 0.0    | 0.4444      | 0.4444               | 0.4444    | 0.4444        | 0.296          |
| , +D+Lr+H                                  | 1 50            | 0.0         | 0.0    | 0 4 4 4 4   | 0 4 4 4 4            | 0 4 4 4 4 | 0 4444        | 0.000          |
|                                            | 1.50            | 0.0         | 0.0    | 0.4444      | 0.4444               | 0.4444    | 0.4444        | 0.290          |
|                                            | 1 50            | 0.0         | 0.0    | 1 467       | 1 467                | 1 467     | 1 467         | 0.000          |
| +D+0.7501 r+0.7501 +H                      | 1.50            | 0.0         | 0.0    | 1.407       | 1.407                | 1.407     | 1.407         | 0.000          |
| 0.0 deg CCW                                | 1.50            | 0.0         | 0.0    | 0.4444      | 0.4444               | 0.4444    | 0.4444        | 0.296          |
| , +D+0.750L+0.750S+H                       |                 |             |        |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                              | 1.50            | 0.0         | 0.0    | 1.211       | 1.211                | 1.211     | 1.211         | 0.807          |
| , +D+0.60W+H                               |                 |             |        |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                              | 1.50            | 0.0         | 0.0    | 0.4444      | 0.4444               | 0.4444    | 0.4444        | 0.296          |
| , +D+0./0E+H                               | 1 50            | 0.0         | 0.0    | 0 4 4 4 4   | 0 4 4 4 4            | 0 4 4 4 4 | 0 4444        | 0.000          |
|                                            | 1.50            | 0.0         | 0.0    | 0.4444      | 0.4444               | 0.4444    | 0.4444        | 0.290          |
| , +D+0.750L1+0.750L+0.450W+H               | 1 50            | 0.0         | 0.0    | 0 4444      | 0 4444               | 0 1 1 1 1 | 0 4444        | 0.000          |
| +D+0 750I +0 750S+0 450W+H                 | 1.50            | 0.0         | 0.0    | 0.4444      | 0.4444               | 0.4444    | 0.4444        | 0.270          |
| 0.0 deg CCW                                | 1.50            | 0.0         | 0.0    | 1.211       | 1.211                | 1.211     | 1.211         | 0.807          |
| +D+0.750L+0.750S+0.5250E+H                 |                 |             |        |             |                      |           |               | 0.000          |
| , 0.0 deg CCW                              | 1.50            | 0.0         | 0.0    | 1.211       | 1.211                | 1.211     | 1.211         | 0.807          |
| , +0.60D+0.60W+0.60H                       |                 |             |        |             |                      |           |               | 0.000          |
| , 0.0 dea CCW                              | 1.50            | 0.0         | 0.0    | 0.2667      | 0.2667               | 0.2667    | 0.2667        | 0.178          |
| , +0.60D+0.70E+0.60H                       | 1 50            | 0.0         | 0.0    | 0.0//7      | 0.0//7               | 0.0//7    | 0.0//7        | 0.000          |
| , 0.0 ded CCVV                             | 1.50            | 0.0         | 0.0    | 0.2007      | 0.2007               | 0.2007    | 0.2007        | 0.178          |
| Overturning Stability                      |                 |             |        |             |                      |           |               |                |
| Rotation Axis &                            |                 |             |        |             |                      |           |               |                |
| Load Combination                           |                 | Overturning | Moment |             | Resisting Moment     | : St      | ability Ratio | Status         |
| Footing Has NO Overturning                 |                 |             |        |             |                      |           |               |                |
| Sliding Stability                          |                 |             |        |             |                      |           |               | All units k    |
| Force Application Axis<br>Load Combination |                 | Sliding     | Force  |             | Resisting Force      | St        | ability Ratio | Status         |
|                                            |                 | 5           |        |             |                      |           |               |                |

Footing Has NO Sliding



Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6

ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30

Licensee : HODGE ENGINEERING INC



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. E Engineer: Project Descr: Gig Harbor, WA 98332 253-857-7055

**General Footing** 

Lic. # : KW-06007122

72" footing - 1500 psf soil Description :

#### Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : IBC 2015

### **General Information**

| Material Properties<br>fc : Concrete 28 day strength<br>fy : Rebar Yield<br>Ec : Concrete Elastic Modulus<br>Concrete Density<br>i Values Elexure                                           | =<br>=<br>= | 2.50 ksi<br>60.0 ksi<br>3,122.0 ksi<br>145.0 pcf<br>0.90 | Soil Design Values<br>Allowable Soil Bearing<br>Increase Bearing By Footing Weight<br>Soil Passive Resistance (for Sliding)<br>Soil/Concrete Friction Coeff. | =<br>=<br>= | 1.50 ksf<br>No<br>250.0 pcf<br>0.30 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|
| Shear<br>Analysis Settings<br>Min Steel % Bending Reinf.<br>Min Allow % Temp Reinf.<br>Min. Overturning Safety Factor                                                                       | =           | 0.750<br>=<br>= 0.00180<br>= 1.0 ; 1                     | Increases based on footing Depth<br>Footing base depth below soil surface<br>Allow press. increase per foot of depth<br>when footing base is below           | =<br>=<br>= | ft<br>ksf<br>ft                     |
| Min. Sliding Safety Factor<br>Add Ftg Wt for Soil Pressure<br>Use ftg wt for stability, moments & shears<br>Add Pedestal Wt for Soil Pressure<br>Use Pedestal wt for stability, mom & shear |             | = 1.0 : 1<br>: Yes<br>: Yes<br>: No<br>: No              | Increases based on footing plan dimension<br>Allowable pressure increase per foot of depth<br>when max. length or width is greater than                      | =           | ksf<br>ft                           |

ft

ft in

#### **Dimensions**

| Width parallel to X-X Axis  | = | 6.0  |
|-----------------------------|---|------|
| Length parallel to Z-Z Axis | = | 6.0  |
| Footing Thickness           | = | 16.0 |

| Pedestal dimensions           |          |        |
|-------------------------------|----------|--------|
| px : parallel to X-X Axis     | =        | in     |
| pz : parallel to Z-Z Axis     | =        | in     |
| Height                        | =        | in     |
| Rebar Centerline to Edge of ( | Concrete |        |
| at Bottom of footing          | =        | 3.0 in |



#### Reinforcing

| Bars parallel to X-X Axis<br>Number of Bars<br>Reinforcing Bar Size<br>Bars parallel to Z-Z Axis<br>Number of Bars<br>Reinforcing Bar Size | =<br>=<br>=                                             | # | 11.0<br>4<br>11.0<br>4 |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---|------------------------|
| Bandwidth Distribution C<br>Direction Requiring Closer<br># Bars required within zon<br># Bars required on each si                         | heck (ACI 15.4.4.2)<br>r Separation<br>le<br>de of zone |   | n/a<br>n/a<br>n/a      |
| Applied Loads                                                                                                                              |                                                         |   |                        |



#### D S Ε Н Lr L W 16.0 31.0 P : Column Load k = **OB** : Overburden ksf = M-xx k-ft = M-zz k-ft = V-x k = V-z k =



Hodge Engineering Inc. Project Title: 2615 Jahn Ave NW Ste. EEngineer: Gig Harbor, WA 98332 253-857-7055 Project Descr: inc. John@HodgeEngineering.com

### **General Footing**

Lic. # : KW-06007122

72" footing - 1500 psf soil Description :

### DESIGN SUMMARY

Residential Footing File = C:\Users\JOHNHO-1\DOCUME-1\ENERCA-1\2015FO-1.EC6 ENERCALC, INC. 1983-2017, Build:6.17.3.17, Ver:6.17.4.30 Licensee : HODGE ENGINEERING INC

| DESIGN SU   | MMARY      |                   |             |             | Design OK                  |
|-------------|------------|-------------------|-------------|-------------|----------------------------|
|             | Min. Ratio | Item              | Applied     | Capacity    | Governing Load Combination |
| PASS        | 0.9993     | Soil Bearing      | 1.499 ksf   | 1.50 ksf    | 0.0 deg CCW                |
| PASS        | n/a        | Overturning - X-X | 0.0 k-ft    | 0.0 k-ft    | No Overturning             |
| PASS        | n/a        | Overturning - Z-Z | 0.0 k-ft    | 0.0 k-ft    | No Overturning             |
| PASS        | n/a        | Sliding - X-X     | 0.0 k       | 0.0 k       | No Sliding                 |
| PASS        | n/a        | Sliding - Z-Z     | 0.0 k       | 0.0 k       | No Sliding                 |
| PASS        | n/a        | Uplift            | 0.0 k       | 0.0 k       | No Uplift                  |
| PASS        | 0.4960     | Z Flexure (+X)    | 10.287 k-ft | 20.738 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.4960     | Z Flexure (-X)    | 10.287 k-ft | 20.738 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.4960     | X Flexure (+Z)    | 10.287 k-ft | 20.738 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.4960     | X Flexure (-Z)    | 10.287 k-ft | 20.738 k-ft | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3712     | 1-way Shear (+X)  | 27.842 psi  | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3712     | 1-way Shear (-X)  | 27.842 psi  | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3712     | 1-way Shear (+Z)  | 27.842 psi  | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.3712     | 1-way Shear (-Z)  | 27.842 psi  | 75.0 psi    | +1.20D+0.50L+1.60S+1.60H   |
| PASS        | 0.7397     | 2-way Punching    | 110.960 psi | 150.0 psi   | +1.20D+0.50L+1.60S+1.60H   |
| Detailed Re | sults      |                   |             |             |                            |

#### Soil Bearing

| Rotation Axis & Xecc                          |                 |             |        | Xecc Zecc Ac |                  | Actual Soil Bearing Stress @ Location |               |                |  |
|-----------------------------------------------|-----------------|-------------|--------|--------------|------------------|---------------------------------------|---------------|----------------|--|
| Load Combination                              | Gross Allowable | (ir         | 1)     | Bottom Left  | Top Left         | Top Right                             | Bottom Right  | Ratio          |  |
| , +D+H<br>, 0.0 deg CCW                       | 1.50            | 0.0         | 0.0    | 0.6378       | 0.6378           | 0.6378                                | 0.6378        | 0.000<br>0.425 |  |
| , +D+L+A<br>, 0.0 dea CCW<br>+D+I r+H         | 1.50            | 0.0         | 0.0    | 0.6378       | 0.6378           | 0.6378                                | 0.6378        | 0.000          |  |
| , 0.0 deg CCW<br>, +D+S+H                     | 1.50            | 0.0         | 0.0    | 0.6378       | 0.6378           | 0.6378                                | 0.6378        | 0.425          |  |
| , 0.0 dea CCW<br>, +D+0.750Lr+0.750L+H        | 1.50            | 0.0         | 0.0    | 1.499        | 1.499            | 1.499                                 | 1.499         | 0.999<br>0.000 |  |
| , 0.0 dea CCW<br>, +D+0.750L+0.750S+H         | 1.50            | 0.0         | 0.0    | 0.6378       | 0.6378           | 0.6378                                | 0.6378        | 0.425<br>0.000 |  |
| , 0.0 dea CCW<br>, +D+0.60W+H                 | 1.50            | 0.0         | 0.0    | 1.284        | 1.284            | 1.284                                 | 1.284         | 0.856<br>0.000 |  |
| , 0.0 dea CCW<br>, +D+0.70E+H                 | 1.50            | 0.0         | 0.0    | 0.6378       | 0.6378           | 0.6378                                | 0.6378        | 0.425<br>0.000 |  |
| , 0.0 dea CCW<br>, +D+0.750Lr+0.750L+0.450W+H | 1.50            | 0.0         | 0.0    | 0.6378       | 0.6378           | 0.6378                                | 0.6378        | 0.425<br>0.000 |  |
| , 0.0 deg CCW<br>, +D+0.750L+0.750S+0.450W+H  | 1.50            | 0.0         | 0.0    | 0.6378       | 0.6378           | 0.6378                                | 0.6378        | 0.425<br>0.000 |  |
| , 0.0 deg CCW<br>, +D+0.750L+0.750S+0.5250E+H | 1.50            | 0.0         | 0.0    | 1.284        | 1.284            | 1.284                                 | 1.284         | 0.856<br>0.000 |  |
| , 0.0 deg CCW<br>, +0.60D+0.60W+0.60H         | 1.50            | 0.0         | 0.0    | 1.284        | 1.284            | 1.284                                 | 1.284         | 0.856          |  |
| , 0.0 deg CCW<br>, +0.60D+0.70E+0.60H         | 1.50            | 0.0         | 0.0    | 0.3827       | 0.3827           | 0.3827                                | 0.3827        | 0.255          |  |
| , 0.0 deg CCW<br>Overturning Stability        | 1.50            | 0.0         | 0.0    | 0.3827       | 0.3827           | 0.3827                                | 0.3827        | 0.255          |  |
| Rotation Axis &<br>Load Combination           | (               | Overturning | Moment |              | Resisting Moment | St                                    | ability Ratio | Status         |  |
| Footing Has NO Overturning                    |                 |             |        |              |                  |                                       |               | AU 11 1.       |  |
| Sliding Stability                             |                 |             |        |              |                  |                                       |               | All units K    |  |
| Force Application Axis<br>Load Combination    |                 | Sliding F   | orce   |              | Resisting Force  | St                                    | ability Ratio | Status         |  |

Footing Has NO Sliding



### Concrete Beam

Lic. # : KW-06007122

File = C:\Users\UOHNHO-1\DOCUME-1\ENERCA-1\2015 footing pad calcs.ec6 . Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 HODGE ENGINEERING INC

#### DESCRIPTION: 12" footing with 6" stem wall 1500 psf soil, 2500 psi concrete

#### **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2015

#### **Material Properties**



#### **Cross Section & Reinforcing Details**

Inverted Tee Section, Stem Width = 6.0 in, Total Height = 18.0 in, Top Flange Width = 12.0 in, Flange Thickness = 6.0 in Span #1 Reinforcing....

2-#4 at 3.0 in from Bottom, from 0.0 to 5.0 ft in this span

1-#4 at 3.0 in from Top, from 0.0 to 5.0 ft in this span

### Beam self weight calculated and added to loads

Load for Span Number 1 Uniform Load : D = 0.0150, S = 0.030 ksf, Tributary Width = 15.0 ft, (Roof) Uniform Load : D = 0.010, L = 0.040 ksf, Tributary Width = 7.0 ft, (Floor) Point Load : D = 3.0, S = 7.0 k @ 2.50 ft

#### **DESIGN SUMMARY Design OK** Maximum Bending Stress Ratio = 0.892 : 1 **Maximum Deflection** Section used for this span Max Downward Transient Deflection 0.003 in Ratio = 19795 >= 360 **Typical Section** Max Upward Transient Deflection 0.000 in Ratio = 0<360.0 Mu : Applied 22.804 k-ft Max Downward Total Deflection 0.006 in Ratio = **9596** >=180. Mn \* Phi : Allowable 25.551 k-ft Max Upward Total Deflection 0.000 in Ratio = 0<180.0 Location of maximum on span 2.505 ft Span # where maximum occurs Span # 1

| Vertical Reactions      |           |           | Support notation : Far left is #1 |          |  |  |  |  |
|-------------------------|-----------|-----------|-----------------------------------|----------|--|--|--|--|
| Load Combination        | Support 1 | Support 2 |                                   |          |  |  |  |  |
| Overall MAXimum         | 7.225     | 7.225     |                                   |          |  |  |  |  |
| Overall MINimum         | 0.700     | 0.700     |                                   |          |  |  |  |  |
| +D+H                    | 2.600     | 2.600     |                                   |          |  |  |  |  |
| +D+L+H                  | 3.300     | 3.300     |                                   |          |  |  |  |  |
| +D+Lr+H                 | 2.600     | 2.600     |                                   |          |  |  |  |  |
| +D+S+H                  | 7.225     | 7.225     |                                   |          |  |  |  |  |
| +D+0.750Lr+0.750L+H     | 3.125     | 3.125     |                                   |          |  |  |  |  |
| +D+0.750L+0.750S+H      | 6.594     | 6.594     |                                   |          |  |  |  |  |
| +D+0.60W+H              | 2.600     | 2.600     |                                   |          |  |  |  |  |
| +D+0.70E+H              | 2.600     | 2.600     |                                   | 51 of 54 |  |  |  |  |
| Permit Number: 19-02196 |           |           |                                   |          |  |  |  |  |



### Concrete Beam Lic. # : KW-06007122

#### File = C:\Users\UOHNHO-1\DOCUME-1\ENERCA-1\2015 footing pad calcs.ec6 . Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 HODGE ENGINEERING INC

### DESCRIPTION: 12" footing with 6" stem wall 1500 psf soil, 2500 psi concrete

| Load Combination            |        |                    |       | Location (ft)    | Bending          | Stress Results (k | :-ft )     |                       |
|-----------------------------|--------|--------------------|-------|------------------|------------------|-------------------|------------|-----------------------|
| Segment                     |        | S                  | pan # | along Beam       | Mu : Max         | Phi*Mnx           | Stress Rat | io                    |
| MAXimum BENDING Envelope    |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 22.80            | 25.55             | 0.89       |                       |
| +1.40D+1.60H                |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 7.17             | 25.55             | 0.28       |                       |
| +1.20D+0.50Lr+1.60L+1.60H   |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 7.54             | 25.55             | 0.30       |                       |
| +1.20D+1.60L+0.50S+1.60H    |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 12.61            | 25.55             | 0.49       |                       |
| +1.20D+1.60Lr+0.50L+1.60H   |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 6.58             | 25.55             | 0.26       |                       |
| +1.20D+1.60Lr+0.50W+1.60H   |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 6.14             | 25.55             | 0.24       |                       |
| +1.20D+0.50L+1.60S+1.60H    |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 22.80            | 25.55             | 0.89       |                       |
| +1.20D+1.60S+0.50W+1.60H    |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 22.37            | 25.55             | 0.88       |                       |
| +1.20D+0.50Lr+0.50L+W+1.60H |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 6.58             | 25.55             | 0.26       |                       |
| +1.20D+0.50L+0.50S+W+1.60H  |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 11.65            | 25.55             | 0.46       |                       |
| +1.20D+0.50L+0.70S+E+1.60H  |        |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 13.68            | 25.55             | 0.54       |                       |
| +0.90D+W+0.90H              |        |                    |       | 5 000            |                  | 05.55             |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 4.61             | 25.55             | 0.18       |                       |
| +0.90D+E+0.90H              |        |                    |       | 5 000            |                  | 05.55             |            |                       |
| Span # 1                    |        |                    | 1     | 5.000            | 4.61             | 25.55             | 0.18       |                       |
| Overall Maximum Deflee      | ctions |                    |       |                  |                  |                   |            |                       |
| Load Combination            | Span   | Max. "-" Defl (in) | Locat | ion in Span (ft) | Load Combination | Max               |            | Location in Span (ft) |
| +D+S+H                      | 1      | 0.0063             |       | 2.500            |                  |                   | 0.0000     | 0.000                 |



### Concrete Beam

Lic. # : KW-06007122

File = C:\UsersUOHNHO-1\DOCUME-1\ENERCA-1\2015 footing pad calcs.ec6 . Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 HODGE ENGINEERING INC

#### DESCRIPTION: 15" footing with 6" stem wall 1500 psf soil, 2500 psi concrete

#### **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2015

### **Material Properties**



#### **Cross Section & Reinforcing Details**

Inverted Tee Section, Stem Width = 8.0 in, Total Height = 18.0 in, Top Flange Width = 15.0 in, Flange Thickness = 6.0 in Span #1 Reinforcing....

2-#4 at 3.0 in from Bottom, from 0.0 to 5.0 ft in this span

1-#4 at 3.0 in from Top, from 0.0 to 5.0 ft in this span

Decign OK

### Beam self weight calculated and added to loads

Load for Span Number 1 Uniform Load : D = 0.0150, S = 0.030 ksf, Tributary Width = 15.0 ft, (Roof) Uniform Load : D = 0.010, L = 0.040 ksf, Tributary Width = 7.0 ft, (Floor) Point Load : D = 3.0, S = 7.0 k @ 2.50 ft, (Point Load)

### **DESIGN SUMMARY**

|                                                            |                                                                                                                             | Design OK                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.868 : 1<br>Typical Section<br>22.962 k-ft<br>26.452 k-ft | Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection | 0.002 in Ratio = 25683 >=360<br>0.000 in Ratio = 0 <360.0<br>0.004 in Ratio = 16719 >=180                                                                                                                                                                                                                                                                                                                   |
| 2.495 ft<br>Span # 1                                       | Max Upward Total Deflection                                                                                                 | 0.000 in Ratio = 0 <180.0                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                            | 0.868 : 1<br>Typical Section<br>22.962 k-ft<br>26.452 k-ft<br>2.495 ft<br>Span # 1                                          | 0.868 : 1Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection<br>Max Upward Total Deflection<br>Max Upward Total Deflection2.495 ft<br>Span # 1Maximum Deflection<br>Max Upward Transient Deflection<br>Max Upward Total Deflection<br>Max Upward Total Deflection |

| Vertical Reactions      |           |           | Support notation : Far left is #1 |          |  |  |  |  |  |
|-------------------------|-----------|-----------|-----------------------------------|----------|--|--|--|--|--|
| Load Combination        | Support 1 | Support 2 |                                   |          |  |  |  |  |  |
| Overall MAXimum         | 7.331     | 7.331     |                                   |          |  |  |  |  |  |
| Overall MINimum         | 0.700     | 0.700     |                                   |          |  |  |  |  |  |
| +D+H                    | 2.706     | 2.706     |                                   |          |  |  |  |  |  |
| +D+L+H                  | 3.406     | 3.406     |                                   |          |  |  |  |  |  |
| +D+Lr+H                 | 2.706     | 2.706     |                                   |          |  |  |  |  |  |
| +D+S+H                  | 7.331     | 7.331     |                                   |          |  |  |  |  |  |
| +D+0.750Lr+0.750L+H     | 3.231     | 3.231     |                                   |          |  |  |  |  |  |
| +D+0.750L+0.750S+H      | 6.699     | 6.699     |                                   |          |  |  |  |  |  |
| +D+0.60W+H              | 2.706     | 2.706     |                                   |          |  |  |  |  |  |
| +D+0.70E+H              | 2.706     | 2.706     |                                   | 53 of 54 |  |  |  |  |  |
| Permit Number: 19-02196 |           |           |                                   |          |  |  |  |  |  |



### Concrete Beam Lic. # : KW-06007122

#### File = C:\UsersUOHNHO-1\DOCUME-1\ENERCA-1\2015 footing pad calcs.ec6 . Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.30 HODGE ENGINEERING INC

### DESCRIPTION: 15" footing with 6" stem wall 1500 psf soil, 2500 psi concrete

| Load Combination                  |      |                    |        | Location (ft)   | Bending          | Stress Results (I | <-ft )           |                       |
|-----------------------------------|------|--------------------|--------|-----------------|------------------|-------------------|------------------|-----------------------|
| Segment                           |      | S                  | pan #  | along Beam      | Mu : Max         | Phi*Mnx           | Stress Rat       | io                    |
| MAXimum BENDING Envelope          |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 22.96            | 26.45             | 0.87             |                       |
| +1.40D+1.60H                      |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 7.35             | 26.45             | 0.28             |                       |
| +1.20D+0.50Lr+1.60L+1.60H         |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 7.70             | 26.45             | 0.29             |                       |
| +1.20D+1.60L+0.50S+1.60H          |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 12.77            | 26.45             | 0.48             |                       |
| +1.20D+1.60Lr+0.50L+1.60H         |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 6.74             | 26.45             | 0.25             |                       |
| +1.20D+1.60Lr+0.50W+1.60H         |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 6.30             | 26.45             | 0.24             |                       |
| +1.20D+0.50L+1.60S+1.60H          |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 22.96            | 26.45             | 0.87             |                       |
| +1.20D+1.60S+0.50W+1.60H          |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 22.52            | 26.45             | 0.85             |                       |
| +1.20D+0.50Lr+0.50L+W+1.60H       |      |                    |        |                 |                  |                   |                  |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 6.74             | 26.45             | 0.25             |                       |
| +1.20D+0.50L+0.50S+W+1.60H        |      |                    |        | F 000           | 11.01            | 0/ 15             | 0.45             |                       |
| Span # 1                          |      |                    | 1      | 5.000           | 11.81            | 26.45             | 0.45             |                       |
| +1.20D+0.50L+0.70S+E+1.60H        |      |                    |        | F 000           | 10.04            | 0/ 15             | 0.50             |                       |
| Span # I                          |      |                    | I      | 5.000           | 13.84            | 26.45             | 0.52             |                       |
| +0.90D+W+0.90H                    |      |                    | 1      | F 000           | 4 70             | 24.45             | 0.10             |                       |
| Span # I                          |      |                    | I      | 5.000           | 4./3             | 26.45             | 0.18             |                       |
| +U.90D+E+U.90H                    |      |                    | 1      | F 000           | 4 70             | 24.45             | 0.10             |                       |
| Span # 1                          |      |                    | I      | 5.000           | 4.73             | 20.45             | 0.18             |                       |
| <b>Overall Maximum Deflection</b> | IS   |                    |        |                 |                  |                   |                  |                       |
| Load Combination S                | Span | Max. "-" Defl (in) | Locati | on in Span (ft) | Load Combination | Max               | <. "+" Defl (in) | Location in Span (ft) |
| +D+S+H                            | 1    | 0.0036             |        | 2.500           |                  |                   | 0.0000           | 0.000                 |