

PROPOSED RUEPPELL HOME DESIGN

PLAN 1572-AB W/OPTIONS

April 16, 2020

Client:

Site:

Calculated by:

Pebble Creek, LLC
Pebble Creek - Base Plan Bremerton, WA

Eric L. Rice, PE
ELR Engineering 1915 Dayton Ave NE
Renton, WA 98056
Phone: (206) 200-8764
Email: elreng33@gmail.com

Project:
Job No
\qquad Figured by: \qquad ELR
Checked by:__Date:_3/6/2020_Sheet:__2
\qquad

Scope of Work:
ELR Engineering was asked to provide permit submittal structural calculations for the proposed Rueppell Home Design Plan 1572-AB for Pebble Creek, LLC. Our structural engineering information is shown in these calculations and on the project architect's submitted S-sheets. The information in this report conforms to the 2015 International Building Code as amended by the local jurisdiction. These calculations are applicable and valid only for the site stated on the cover sheet of these calculations. Questions should be addressed to the undersigned.

Eric L. Rice, PE
ELR Engineering

1. International Building Code (IBC) - 2015 edition with local jurisdiction amendments as applicable
2. ASCE/SEI 7-10 - Minimum Design Loads for Buildings and Other Structures with Supplement No. 1
3. ANSI AWC NDS-2015/AWC SPDWS 2015/AWC WFCM 2015 - National Design Specification for Wood Construction with 2015 NDS Supplement/Special Design Provisions for Wind \& Seismic/Wood Frame Construction Manual for One- and Two-Family Dwellings
4. ACI 318-14 - Building Code Requirements for Structural Concrete
5. AISC 360-10/341-10 - Specification for Structural Steel Buildings/Seismic Provisions for Structural Steel Buildings
6. AWS D1.4/D1.4M-2011/Structural Welding Code
7. TMS 402-2013/ACI 530-13/ASCE 5-13 - Building Code Requirements for Masonry Structures
DESIGN CRITERIA
8. Wind - Risk category = II, Basic wind speed $(V)=110 \mathrm{mph}$, Wind directionality factor $=0.85$, Exposure category $=B$, Topographic factor Kzt $=1.00$, Gust effect factor $=0.85$, Enclosure classification $=$ Enclosed, Internal pressure coefficient $\left(\mathrm{GC}_{\mathrm{pi}}\right)= \pm 0.18$
9. Seismic - Risk category $=\|$, Seismic importance factor (le) $=1.00$, Site Class $=\mathrm{D}$, $S_{S}=1.579, S_{1}=0.611, S_{D S}=1.053, S_{D 1}=0.611$, Seismic Design Category $=$ D, Basic seismic-force-resisting system = A. 15 per ASCE 7-10 Table 12.2-1, Seismic response coefficient $(\mathrm{Cs})=0.162$ (orthogonal 1) \& 0.162 (orthogonal 2), Response modification factor $(R)=6.5$ (orthogonal 1) \& 6.5(orthogonal 2), Design procedure used $=$ Equivalent Lateral Force Procedure.
10. Roof - Dead: 15 psf

Live: 20 psf
Snow: 25 psf (Ps)
4. Floor - Dead: 12 psf

Live: 40 psf (uniform), 60 psf (uniform deck)
5. Soils - Vertical bearing pressure (capacity): 1500 psf Lateral bearing pressure (capacity): $150 \mathrm{psf} / \mathrm{ft}$ of depth
Coefficient of friction (capacity): 0.25 (multiplied by dead load)
Active design lateral load: $40 \mathrm{psf} / \mathrm{ft}$ of depth
At-rest design lateral load: $60 \mathrm{psf} / \mathrm{ft}$ of depth
STRUCTURAL OBSERVATION

1. Structural observation is required only when specifically designated as being required by the registered design professional or the building official.
SOIL CONSTRUCTION
2. Extend footings to undisturbed soil or fill compacted to 95% Modified Proctor (ASTM D1557). All construction on fill soils shall be reviewed by a registered geotechnical engineer. All footings shall be 18 inches minimum below adjacent finish grade. It is the contractor's responsibility to verify that the site soils provide the minimum vertical bearing pressure capacity stated above.
PIPE PILES
3. Pipe shall conform to ASTM A53 Grade B. Unless noted otherwise, pipe is not required to be galvanized.
4. Pipe shall be driven to refusal and tested (as required) per Geotechnical Engineer's requirements.
REINFORCED CONCRETE
5. f'c $=3000$ psi(*) at 28 days. Min $5-1 / 2$ sacks of cement per cubic yard of concrete and maximum of $6-3 / 4$ gallons of water per 94 lb . sack of cement. (*) Special inspection is not required - 3000 psi compressive strength is specified for weathering protection only - structural design is based on $\mathrm{f}^{\prime} \mathrm{c}=2500$ psi.
6. Maximum aggregate size is $7 / 8^{\prime \prime}$. Maximum slump $=4$ inches.
7. All concrete shall be air entrained -5% minimum / 7% maximum (percent by volume of concrete).
8. Mixing and placement of all concrete shall be in accordance with the $\mid B C$ and $A C \mid 318$. Proportions of aggregate to cement shall be such as to produce a dense, workable mix which can be placed without segregation or excess free surface water. Provide $3 / 4$ inch chamfer on all exposed concrete edges unless otherwise indicated on architectural drawings.
9. No special inspection is required.
10. Vibrate all concrete walls. Segregation of materials shall be prevented.

REINFORCING STEEL

1. Concrete reinforcement shall be detailed, fabricated and placed in accordance with ACI 318.
2. Reinforcing steel shall be grade 40 minimum and deformed billet steel conforming to ASTM A615.
3. Welded wire mesh shall conform to ASTM A185.
4. Reinforcing steel shall be accurately placed and adequately secured in position. The following protection for reinforcement shall be provided:

Cast against and permanently exposed to earth Exposed to earth or weather -

Slabs and walls at interior face -

$$
\frac{\text { Min Cover }}{70}
$$

 Min Cover

 Min Cover}3"
1.5" for \#5 bar and smaller

2" for \#6 bar and larger
1.5 "
5. Lap continuous reinforcing bars 32 bar diameters ($1^{\prime \prime}-6^{\prime \prime} \mathrm{min}$) in concrete. Corner bars consisting of 32 bar diameter ($1^{\prime}-6^{\prime \prime} \mathrm{min}$) bend shall be provided for all horizontal reinforcement. Lap welded wire mesh edges 1.5 mesh minimum. This criteria applies unless noted otherwise.
RETAINING WALLS

1. Concrete floor slabs to be poured and cured and floor framing above shall be complete before backfilling behind retaining walls.

TIMBER

1. Unless noted otherwise, all sawn lumber shall be kiln dried and graded/marked in conformance with WCLIB standard grading for west coast lumber. Lumber shall meet the following minimum criteria:

$$
\begin{array}{ll}
4 x \text { and larger: } & \mathrm{DF} \# 2(\mathrm{Fb}=875 \mathrm{psi}) \\
3 x \text { and smaller: } & \mathrm{HF} \# 2(\mathrm{Fb}=850 \mathrm{psi}) \text { or } \mathrm{SPF} \# 2(\mathrm{Fb}=875 \mathrm{psi})
\end{array}
$$

2. Wall studs shall be:

Bearing walls with $10^{\prime}-0$ " maximum stud length
2×4 HF stud grade or btr at 24 " (max) oc - carrying only roof and ceiling
$2 \times 4 \mathrm{HF}$ stud grade or btr at $16^{\prime \prime}$ (max) oc - carrying only one floor, roof and ceiling
2×6 HF stud grade or btr at $24^{\prime \prime}$ (max) oc - carrying only one floor, roof and ceiling
$2 \times 6 \mathrm{HF}$ stud grade or btr at $16^{\prime \prime}$ (max) oc - carrying only two floors, roof and ceiling
Non-Bearing walls with maximum stud length noted
2×4 HF stud grade or btr at 24 " (max) oc - 10' -0 " maximum stud length
$2 \times 6 \mathrm{HF}$ stud grade or btr at $24^{\prime \prime}$ (max) oc - 15'-0" maximum stud length
3. Provide 4×6 DF2 header over openings not noted otherwise. Provide (1) $2 x$ trimmer and (1) $2 x$ king header support for clear spans $5^{\prime}-0$ " or less. Provide (2) $2 x$ trimmer and (1) $2 x$ king header support for clear spans exceeding 5'-0".
4. Provide solid blocking in floor space under all posts and wall members connected to holdowns. Orient blocking such that wood grain in blocking is oriented vertically.
5. Provide double floor joists under all partition walls parallel to floor joists and along the perimeter of all diaphragm openings.
6. Provide double blocking between floor joists under all partition walls perpendicular to floor joists.
WOOD CONNECTORS, FASTENERS AND PRESSURE TREATED WOOD

1. All wood connectors shall be Simpson or approved equal.
2. All nails shall be common wire nails unless noted otherwise.
3. All nailing shall meet the minimum nailing requirements of Table 2304.10.1 of the International Building Code.
4. All wood in contact with ground or concrete to be pressure-treated with a wood preservative.
5. Wood used above ground shall be pressure treated in accordance with AWPA U1 for the following conditions:
a) Joists, girders, and subfloors that are closer than 18 " to exposed ground in crawl spaces or unexcavated areas located within the perimeter of the building foundation.
b) Wood framing including sheathing that rest on exterior foundation walls and are less than 8 inches from exposed earth.
c) Sleepers, sills, ledgers, posts and columns in direct contact with concrete or masonry.
6. All field-cut ends, notches, and drilled holes of preservative-treated wood shall be treated, for use category UC4A per AWPA U1-07, in the field using a 9.08\% Copper Naphthenate (CuN) solution such as "End cut Solution" (Cunapsol-1) in accordance with the directions of the product manufacturer.
7. All wood connectors and associated steel fasteners (except anchor bolts and holdown anchors, $1 / 2$ " diameter and larger) in contact with any preservative-treated wood shall conform to one of the following corrosion protection configuration options:
a) All wood connectors and associated steel fasteners shall be Type 303, 304, 306 or 316 stainless steel when actual wood preservative retention levels exceed the following levels: Treatment
ACQ (Alkaline Copper Quat)
MCQ (Micronized Copper Quat)

CA-B (Copper Azole)	Greater than 0.21
$C A-C ~ \& ~ M C A ~(C o p p e r ~ A z o l e ~ \& ~ A z o l e ~ B i o c i d e) ~$	Greater than 0.15
$\mu C A-C$ (Azole Biocide)	
Greater than 0.14	

b) When actual wood preservative retention levels do not exceed the levels in 7.a) above, all wood connectors and fasteners shall, at a minimum, be hot-dipped galvanized by one of
the following methods:
i) Continuous hot-dipped galvanizing per ASTM A653, type G185.
ii) Batch or Post hot-dipped galvanizing per ASTM 123 for individual connectors and as per ASTM A153 for fasteners. Fasteners, other than nails, timber rivets, wood screws and lag screws, may be hot-dipped galvanized as per ASTM B695, Class 55 minimum.
c) Plain carbon steel fasteners in SBX/DOT and zinc borate preservative treated wood in an interior, dry environment shall be permitted.
8. Do not mix stainless steel and hot-dipped galvanized wood connectors and fasteners.
9. All anchor bolts shall be as specified in the general notes on the shearwall schedule.
10. Where a connector strap connects two wood members, install one half of the total required nails or bolts in each member.
11. All bolts in wood members shall conform to ASTM A307.
12. Provide standard cut washers under the head of all bolts and lag screws bearing on wood.

ANCHORAGE

1. All anchor bolts and holdown bolts embedded in concrete or masonry shall be A307 unless noted otherwise. Expansion bolts into concrete not otherwise specified shall be Simpson STRONG-BOLT 2 Wedge Anchor. Install in accordance with ICC ESR-1771, including minimum embedment depth requirements.
NAILS
2. Nailing of wood framed members to be in accordance with IBC table 2304.10.1 unless otherwise noted. Connection designs are based on nails with the following properties:

PENNY WEIGHT	DIAMETER (INCHES)		LENGTH (INCHES)
Od sinker	0.113	$2-3 / 8$	
8d common	0.131	$2-1 / 2$	
10d box	0.131	3	
16d sinker	0.148	$3-1 / 4$	
16d common	0.162	$3-1 / 2$	

SHEARWALLS

1. All shearwall plywood nailing and anchors shall be as detailed on the drawings and noted in the shearwall schedule. All exterior walls shall be sheathed with $7 / 16$ " APA rated sheathing (24/16) - blocked - with minimum nailing $0.131^{\prime \prime}$ diameter $\times 2.5^{\prime \prime}$ nails @ 6" OC edges/12" oc field unless noted otherwise.
2. All headers shall have strap connectors to the top plate each end when the header interrupts the continuous (2) $2 x$ top plate. Use (1)Simpson MSTA24 connector each end unless noted otherwise.
3. All shearwall holdowns shall be as noted on the plans and shall be simpson or approved equal.
4. All holdown anchors shall be installed as shown on plans and as per manufacturer's requirements. Holdown anchors may be wet-set or drilled and epoxied (Simpson "SET" epoxy or approved equal) with prior approval from the Engineer of Record. Provide the full embedment into concrete as stated on the plans.
FLOOR AND ROOF DIAPHRAGMS
5. Apply $23 / 32^{\prime \prime}$ APA rated Sturd-I-Floor (24" oc) nailed to floor framing members with 0.131 " diameter $\times 2.5^{\prime \prime}$ nails at 6" OC at all supported edges and at $12^{\prime \prime}$ OC at interior supports unless noted otherwise on the plans. Offset panel joints between parallel adjacent runs of sheathing.
6. Apply $7 / 16^{\prime \prime}$ APA rated sheathing (24/16) nailed to roof framing members with $0.113^{\prime \prime}$ diameter x 2.5" nails at 6" OC at supported edges and at 12" OC at interior supports unless noted otherwise on the plans. Offset panel joints between parallel adjacent runs of sheathing.
7. Blocking of interior edges is not required unless noted otherwise on the plans.

BUILT-UP WOOD COLUMNS

1. All columns not specified or otherwise noted on the plans shall be (2) $2 x$ studs gang fastened per standard detail.
2. All columns not specified or otherwise noted on the plans supporting girder trusses or beams shall be (3) $2 x$ studs gang fastened per standard detail.
MANUFACTURED WOOD TRUSSES
3. Trusses shall be designed, fabricated, and installed in accordance with the "Design Specifications for Light Metal Plate Connected Wood Trusses" by the Truss Plate Institute.
4. All trusses shall be designed and stamped by a professional engineer licensed in the State of Washington.
5. Roof trusses shall be fabricated of Douglas Fir-Larch or Hem-Fir.
6. All mechanical connectors shall be IBC approved.
7. Submit design calculations, shop drawings and installation drawings stamped by a licensed engineer of all trusses to the owner's representative for review and Building Department approval.
8. Truss members and components shall not be cut, notched, drilled, spliced or otherwise altered in any way without written approval of the registered design professional.
9. Where trusses align with shearwalls, a special truss shall be provided that has been designed to transfer the load between the roof sheathing and the shearwall below. This truss shall be designed to transfer a minimum of 100 plf along the full length of the truss.
10. All temporary and permanent bracing required for the stability of the truss under gravity loads and in-plane wind or seismic loads shall be designed by the truss engineer. Any bracing loads transferred to the main building system shall be identified and submitted to the engineer of record for review.
PARALLEL STRAND LUMBER (PSL)
11. Parallel strand lumber shall be manufactured as per NER-292 and meet the requirements of ASTM D2559 - $\mathrm{Fb}=2900$ psi, $\mathrm{E}=2.2 \mathrm{E} 6$ psi for beams and $\mathrm{Fb}=2400$ psi, $\mathrm{E}=1.8 \mathrm{E} 6$ psi for columns.
LAMINATED VENEER LUMBER (LVL)
12. Laminated veneer lumber shall be Doug Fir meeting the requirements of ASTM D2559 $\mathrm{Fb}=2600$ psi, $\mathrm{E}=2.0 \mathrm{E} 6$ psi.
13. For top loaded multiple member beams only, fasten with two rows of 0.148 " diameter $\times 3$ " nails at 12" OC. Use three rows of $0.148^{\prime \prime}$ diameter $\times 3^{\prime \prime}$ nails for beams with depths of 14 " or more.
14. Provide full depth blocking for lateral support at bearing points.

LAMINATED STRAND LUMBER (LSL)

1. Laminated strand lumber shall be manufactured as per NER-292 and meet the requirements of ASTM D2559 - $\mathrm{Fb}=2325$ psi, $\mathrm{E}=1.55 \mathrm{E} 6$ psi for beams and $\mathrm{Fb}=1700$ psi, $\mathrm{E}=1.3 \mathrm{E} 6$ psi for beams/columns and $\mathrm{Fb}=1900$ psi, $\mathrm{E}=1.3 \mathrm{E} 6$ psi for planks.
GLUED LAMINATED WOOD MEMBERS (GLB)
2. Glued laminated wood beams shall be Douglas Fir, kiln-dried, stress grade combination $24 \mathrm{~F}-\mathrm{V} 4$ ($\mathrm{Fb}=2400$ psi, $\mathrm{E}=1.8 \mathrm{E} 6 \mathrm{psi}$) unless otherwise noted on the plans.
3. Fabrication shall be in conformance with ANSI A190.1-12.
4. AITC stamp and certification required on each and every member.

WOOD I-JOISTS

1. Joists by Truss Joists/MacMillan or approved equal.
2. Joists to be erected in accordance with the plans and any Manufacturers drawings and installation drawings.
3. Construction loads in excess of the design loads are not permitted.
4. Provide erection bracing until sheathing material has been installed.
5. See manufacturer's references for limitations on the cutting of webs and/or flanges.

STEEL CONSTRUCTION

1. Structural steel shall be ASTM A992 (wide flange shapes) or A53-Grade B (pipe) or A36 (other shapes and plate) unless noted otherwise.
2. All fabrication and erection shall comply with AISC specifications and codes.
3. All welding shall be as shown on the drawings and in accordance with AWS and AISC standards. Welding shall be performed by WABO certified welders using E7OXX electrodes. Only pre-qualified welds (as defined by AWS) shall be used.
MASONRY
4. Construction shall meet the requirements of IBC Chapter 21.
5. Special inspection is not required.
6. All concrete block masonry shall be laid up in running bond and shall have a minimum compressive strength of f'm $=1500$ psi, using Type " $S^{\prime \prime}$ mortar, f"c $=1800$ psi.
7. All cells containing reinforcing bars shall be filled with concrete grout with an frc $=2000$ psi in maximum lifts of $4^{\prime \prime}-0^{\prime \prime}$.
8. Bond beams with two \#5 horizontally shall be provided at all floor and roof elevations and at the top of the wall.
9. Provide a lintel beam with two \#5 horizontally over all openings and extend these two bars $2^{\prime}-0^{\prime \prime}$ past the opening at each side or as far as possible and hook.
10. Provide two \#5 vertically for the full story height of the wall at wall ends, intersections, corners and at each side of all openings unless otherwise shown.
11. Dowels to masonry walls shall be embedded a minimum of $1^{\prime \prime}-6^{\prime \prime}$ or hooked into the supporting structure and of the same size and spacing as the vertical wall reinforcing.
12. Provide corner bars to match the horizontal walls reinforcing at all wall intersections.
13. Reinforcing steel shall be specified under "REINFORCING STEEL". Lap all reinforcing
bars 40 bar diameters with a minimum of $1^{\prime \prime}-6 "$.
14. Masonry walls shall be reinforced as shown on the plans and details and if not shown, shall have (1) \#5 @ 48" OC horizontally and (1) \#5 @ 48" OC vertically.
15. Embed anchor bolts a minimum of $5^{\prime \prime}$.

GENERAL CONSTRUCTION

1. All materials, workmanship, design, and construction shall conform to the project drawings, specifications, and the International Building Code.
2. Structural drawings shall be used in conjunction with architectural drawings for bidding and construction. Contractor shall verify dimensions and conditions for compatibility and shall notify the architect of any discrepancies prior to construction.

Discrepancies: The contractor shall inform the engineer in writing, during the bidding period, of any and all discrepancies or omissions noted on the drawings and specifications or of any variations needed in order to conform to codes, rules and regulations. Upon receipt of such information, the engineer will send written instructions to all concerned. Any such
discrepancy, omission, or variation not reported shall be the responsibility of the contractor.
3. The contractor shall provide temporary bracing as required until all permanent framing and connections have been completed.
4. The contractor shall coordinate with the building department for all permits and building department required inspections.
5. Do not scale drawings. Use only written dimensions.
6. Drawings indicate general and typical details of construction. Where conditions are not specifically indicated but are of similar character to details shown, similar details of construction shall be used, subject to review and approval by the architect and the structural engineer.
7. Contractor initiated changes shall be submitted in writing to the architect and structural engineer for approval prior to fabrication or construction.
8. All structural systems which are to be composed of field erected components shall be supervised by the supplier during manufacturing, delivery, handling, storage, and erection in accordance with instructions prepared by the supplier.
9. Contractor shall be responsible for all safety precautions and the methods, techniques, sequences, or procedures required to perform the work.
10. Shop drawing review: Dimensions and quantities are not reviewed by the engineer of record, therefore, must be reviewed by the contractor. Contractor shall review and stamp all shop drawings prior to submitting for review by the engineer of record. Submissions shall include a reproducible and one copy. Reproducible will be marked and returned. Re-submittals of previously submitted shop drawings shall have all changes clouded and dated with a sequential revision number. Contractor shall review and stamp all revised and resubmitted shop drawings prior to submittal and review by the engineer of record. In the event of conflict between the shop drawings and design drawings/specifications, the design drawings/specifications shall control and be followed.
Shearwall Schedule [(1),(7),(13)]

Mark per plan	Sheathing	No. sides sheathed	Fastener size	Edge fastener spacing (14)	Field fastener spacing	Framing member at adjoining panels (2)	Bottom plate when directly on wood (10)	Bottom plate nail size	Bottom plate nail spacing in each row	Bottom plate when directly on concrete (4),(5),(10)	Anchor bolt dia. (8)	$\begin{aligned} & \text { Anchor } \\ & \text { bolt } \\ & \text { spacing, } \\ & \text { (} 2 x \text { sill) } \\ & \text { (} 3 x \text { sill) } \end{aligned}$	Top plate connector (9),(15)	Top plate connector spacing (11),(15)	ASD Vseismic (12)	$\begin{array}{\|c\|} \hline \text { ASD } \\ \text { Vwind } \\ (+40 \%) \\ (12) \end{array}$
W6A	$\begin{gathered} 7 / 16^{\prime \prime} \\ \text { PLY/OSB } \end{gathered}$	1	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 2.5^{\prime \prime} \end{gathered}$	$6{ }^{\prime \prime}$	$12^{\prime \prime}$	2 x stud \& unblocked horz. joints	2 x	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 3^{\prime \prime} \end{gathered}$	$\begin{gathered} \text { 1-row } \\ 12^{\prime \prime} \end{gathered}$	2 x or 3x	5/8"	$\begin{aligned} & 72 "(2 x) \\ & 72 "(3 x) \end{aligned}$	$\begin{gathered} \text { A35 or } \\ \text { LTPP } \end{gathered}$	50"	$\begin{gathered} 145 \\ \text { plf } \end{gathered}$	$\begin{gathered} 203 \\ \text { plf } \end{gathered}$
W6B	$\begin{gathered} 7 / 16^{\prime \prime} \\ \text { PLY/OSB } \end{gathered}$	1	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 2.5^{\prime \prime} \end{gathered}$	6"	6"	$2 x$ stud \& unblocked horz. joints	2 x	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 3^{\prime \prime} \end{gathered}$	$\begin{gathered} \text { 1-row } \\ 9^{\prime \prime} \end{gathered}$	2 x or 3x	5/8"	$\begin{aligned} & 72^{\prime \prime}(2 \mathrm{x}) \\ & 72 "(3 \mathrm{x}) \end{aligned}$	$\begin{gathered} \text { A35 or } \\ \text { LTP4 } \end{gathered}$	$36 "$	$\begin{gathered} 193 \\ \text { plf } \end{gathered}$	$\begin{gathered} \mathbf{p l f} \\ \text { pla } \end{gathered}$
W6	$\begin{gathered} 7 / 16^{\prime \prime} \\ \text { PLY/OSB } \end{gathered}$	1	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 2.5^{\prime \prime} \end{gathered}$	$6 "$	12"(3)	2 x	2 x	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 3^{\prime \prime} \end{gathered}$	$\begin{gathered} \text { 1-row } \\ 7 \text { 7" } \end{gathered}$	2 x or 3x	5/8"	$\begin{aligned} & 68^{\prime \prime}(2 x) \\ & 72 "(3 x) \end{aligned}$	A35 or LTP4	30"	$\underset{\text { plf }}{242}$	$\begin{gathered} 339 \\ \text { plf } \end{gathered}$
W4	$\begin{gathered} 7 / 16^{\prime \prime} \\ \text { PLY/OSB } \end{gathered}$	1	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 2.5^{\prime \prime} \end{gathered}$	4"	12"(3)	2 x	2 x	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 3^{\prime \prime} \end{gathered}$	$\begin{gathered} \text { 2-row } \\ \text { 10"(6) } \end{gathered}$	2 x or 3x	5/8'	$\begin{aligned} & 47 "(2 x) \\ & 58 "(3 x) \end{aligned}$	A35 or LTP4	20"	$\begin{gathered} 353 \\ \text { plf } \end{gathered}$	$\begin{gathered} 495 \\ \text { plf } \end{gathered}$
W3	$\begin{gathered} 7 / 16^{\prime \prime} \\ \text { PLY/OSB } \end{gathered}$	1	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 2.5^{\prime \prime} \end{gathered}$	3"	12"(3)	$\begin{gathered} 3 x \\ (5,17) \end{gathered}$	2 x	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 3^{\prime \prime} \end{gathered}$	$\begin{aligned} & \text { 2-row } \\ & \text { 8"(6) } \end{aligned}$	2 x or 3x	5/8'	$\begin{aligned} & 36^{\prime \prime}(2 x) \\ & 45 "(3 x) \end{aligned}$	A35 or LTP4	$16^{\prime \prime}$	$\begin{gathered} 456 \\ \text { plf } \end{gathered}$	$\begin{gathered} 638 \\ \text { plf } \end{gathered}$
W2	$\begin{gathered} 7 / 16^{\prime \prime} \\ \text { PLY/OSB } \end{gathered}$	1	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 2.5^{\prime \prime} \end{gathered}$	2"	12"(3)	$\begin{gathered} 3 x \\ (5,17) \end{gathered}$	2 x	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 3^{\prime \prime} \end{gathered}$	$\begin{aligned} & \text { 2-rows } \\ & 6 "(6) \end{aligned}$	2 x or 3x	5/8"	$\begin{aligned} & 28 "(2 x) \\ & 34 "(3 x) \end{aligned}$	A35 or LTP4	12"	$\begin{gathered} 595 \\ \text { plf } \end{gathered}$	$\begin{gathered} 833 \\ \text { plf } \end{gathered}$
2W3	$\begin{gathered} 7 / 16^{\prime \prime} \\ \text { PLY/OSB } \end{gathered}$	2	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 2.5^{\prime \prime} \end{gathered}$	3"	12"(3)	$\begin{gathered} 3 x \\ (5,16,17) \end{gathered}$	2 x	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 3^{\prime \prime} \end{gathered}$	$\begin{aligned} & \text { 3-rows } \\ & 6 "(6) \end{aligned}$	2 x or 3x	5/8"	$\begin{aligned} & 18 "(2 x) \\ & 22 "(3 x) \end{aligned}$	$\begin{aligned} & \text { A35 or } \\ & \text { LTP4 } \end{aligned}$	8"	$\underset{\text { plf }}{911}$	$\begin{gathered} 1276 \\ \text { plf } \end{gathered}$
2W2	$\begin{aligned} & 19 / 32^{\prime \prime} \\ & \text { PLY/OSB } \end{aligned}$	2	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 2.5^{\prime \prime} \end{gathered}$	2"	$12^{\prime \prime}$	$\begin{gathered} 3 x \\ (5,16,17) \end{gathered}$	2 x	$\begin{gathered} 0.131^{\prime \prime} \\ \text { dia. } \times 3^{\prime \prime} \end{gathered}$	$\begin{aligned} & \text { 3-rows } \\ & \text { 4"(6) } \end{aligned}$	2 x or 3x	5/8"	$\begin{aligned} & 12 "(2 x) \\ & 15 "(3 x) \end{aligned}$	A35 or LTP4	5"	$\begin{gathered} 1363 \\ \text { plf } \end{gathered}$	$\begin{gathered} 1908 \\ \text { plf } \end{gathered}$

General Notes: (unless noted otherwise)
Wall stud framing is assumed to be as per the general structural notes.
All panel edges are to be supported by framing members - studs, plates and blocking (unless noted otherwise in the table above).

or 2) wall studs at $24^{\prime \prime}$ oc with panel long-axis oriented horizontally and $6^{\prime \prime}$ oc field fastener spacing.
(2) $2 x$ material can be used in lieu of $3 x$ material provided the (2) $2 x$ is gang nailed as per the associated shearwall bottom plate nailing.
Where bottom plate attachment specifies 2 or more rows of nails into the wood floor below, provide rim joist(s), joist(s) or blocking that has a minimum total width of 2.5 inches.
Unless noted otherwise, provide (1)2x treated mudsill with $5 / 8^{\prime \prime}$ diameter anchor bolts at $72^{\prime \prime}$ oc and located within $4^{\prime \prime}$ to 12 " from the cut ends of the sill plate. Provide a minimum
 of the nearest plate washer shall not exceed $1 / 2^{\prime \prime}$. Embed anchor bolts 7 inches min. into concrete. Min. anchor bolt concrete edge dist. (perp. to
 Spacing shown assumes top plate connectors are installed on one side of wall. If installed on both sides of wall, required spacing can be multiplied by two (2).
Shearwalls designated as FTAO (force transfer around openings) or perforated require sheathing and shear nailing above and below all openings for the full extent of the shearwall.
Shearwall edge nailing is required along full height of all holdown members. At built-up holdown members, distribute edge nailing into all laminations

Vertical and horizontal panel joints (where occur) shall be located on a $3 x$ framing member (min.) with panel edge nailing staggered or on a (2) $2 x$ (min.) framing member as per footnote (5) above.

ELR Engineering
1915 Dayton Ave NE
Renton, WA 98056 phone: (206) 200-8764
email: elreng33@gmail.com

Vertical Calculations

		J OB SUMMARY REPORT 1572-AB	
Roof			
Member Name	Results	Current Solution	Comments
1	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	
2	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	
3-B	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	
Floor-2			
Member Name	Results	Current Solution	Comments
1	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
2	Passed	1 piece(s) $117 / 8^{\prime \prime} \mathrm{TJI®} 110$ @ 16" OC	
3	Passed	1 piece(s) $117 / 8^{\prime \prime}$ TJI® 110 @ 16" OC	
4	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 11$ 7/8" 2.2 E Parallam® PSL	
5	Passed	1 piece(s) $31 / 2^{\prime \prime} \times 7$ 1/2" 24F-V4 DF Glulam	
6	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	
7	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	
8	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	
9-A	Passed	1 piece(s) $51 / 2^{\prime \prime} \times 161 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
9-B	Passed	1 piece(s) $51 / 2^{\prime \prime} \times 161 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
10	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	
11-A	Passed	1 piece(s) $51 / 4{ }^{\prime \prime} \times 11$ 7/8" 2.2 E Parallam® PSL	
11-B	Passed	1 piece(s) $51 / 4^{\prime \prime} \times 11$ 7/8" 2.2 E Parallam® PSL	
12	Passed	1 piece(s) $51 / 2^{\prime \prime} \times 131 / 2^{\prime \prime} 24 F-V 4$ DF Glulam	
Floor-1			
Member Name	Results	Current Solution	Comments
1	Passed	1 piece(s) 2×10 Hem-Fir No. 2 @ 16" OC	
2	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	

ForteWEB Software Operator	Job Notes
Eric L Rice	Client: Pebble Creek, LLC
ELR Engineering	Project: Pebble Creek - 1572-AB
(206) 200-8764	
elreng33@gmail.com	

3/6/2020 4:16:09 PM UTC

Roof, 1
1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1119 @ 0$	$3281(1.50 ")$	Passed (34\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$735 @ 83 / 4^{\prime \prime}$	3502	Passed (21\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1189 @ 2 ' 11 / 2^{\prime \prime}$	3438	Passed (35\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.013 @ 2^{\prime} 11 / 2^{\prime \prime}$	0.142	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.022 @ 2^{\prime} 11 / 2^{\prime \prime}$	0.213	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $4^{\prime} 3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $4^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	Accessories
1-Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	428	691	1119	None
2 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	428	691	1119	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $4^{\prime} 3^{\prime \prime}$	N/A	6.4	--	
1 - Uniform (PSF)	0 to $4^{\prime} 3^{\prime \prime}$	13^{\prime}	15.0	25.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	J ob
Eric L Rice	Clie
ELR Engineering	Pro
(206) 200-8764	
elreng33@gmail.com	

Job Notes
Client: Pebble Creek, LLC
Project: Pebble Creek - 1572-AB

Roof, 2
1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$708 @ 0$	$3281(1.50 ")$	Passed (22\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$542 @ 83 / 4^{\prime \prime}$	3502	Passed (15\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1106 @ 3^{\prime} 11 / 2^{\prime \prime}$	3438	Passed (32\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.027 @ 3^{\prime} 11 / 2^{\prime \prime}$	0.208	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.044 @ 3^{\prime} 11 / 2^{\prime \prime}$	0.313	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $6^{\prime} 3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $6^{\prime} 3^{\prime \prime} 0 / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - HF	$1.50{ }^{\prime \prime}$	1.50 "	1.50 "	278	430	708	None
2 - Trimmer - HF	$1.50{ }^{\prime \prime}$	1.50"	$1.50{ }^{\prime \prime}$	278	430	708	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to $6^{\prime} 3^{\prime \prime}$	N/A	6.4	--	
1 - Uniform (PSF)	0 to $6^{\prime} 3^{\prime \prime}$	$5^{\prime} 6^{\prime \prime}$	15.0	25.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	J ob
Eric L Rice	Clie
ELR Engineering	Pro
(206) 200-8764	
elreng33@gmail.com	

Job Notes
Client: Pebble Creek, LLC
Project: Pebble Creek - 1572-AB

Roof, 3-B
1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1569 @ 0$	$3281(1.50 ")$	Passed (48\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1564 @ 83 / 4^{\prime \prime}$	3502	Passed (45\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1630 @ 11^{\prime} 1 / 2^{\prime \prime}$	3438	Passed (47\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.015 @ 11^{\prime} 113 / 16^{\prime \prime}$	0.142	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.024 @ 1^{\prime} 111 / 4^{\prime \prime}$	0.213	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $4^{\prime} 3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $4^{\prime} 3^{\prime \prime} 0 / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	597	972	1569	None
2- Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	254	400	654	None

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $4^{\prime} 3^{\prime \prime}$	N/A	6.4	--	
1 - Tapered (PSF)	$1^{\prime} 1 / 2^{\prime \prime}$ to $4^{\prime} 3^{\prime \prime}$	1^{\prime} to $2^{\prime} 8^{\prime \prime}$	15.0	25.0	Default Load
2 - Point (Ib)	$1^{\prime} 1 / 2^{\prime \prime}$	N/A	735	1225	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-2, 1
1 piece(s) 11 7/8" TJI® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1401 @ 18^{\prime} 5^{\prime \prime}$	$2350\left(5.25^{\prime \prime}\right)$	Passed (60\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$705 @ 18^{\prime} 21 / 4^{\prime \prime}$	1716	Passed (41\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$-2316 @ 18^{\prime} 5^{\prime \prime}$	3160	Passed (73\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.290 @ 8^{\prime} 93 / 4^{\prime \prime}$	0.451	Passed (L/746)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.360 @ 8^{\prime} 83 / 4^{\prime \prime}$	0.902	Passed (L/601)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	41	Any	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $3^{\prime} 8 \mathrm{on} \circ / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of decking_2332Panels that is gluedAndNailedDown.
- Additional considerations for the TJ-Pro ${ }^{T M}$ Rating include: 5/8" Gypsum ceiling.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Beam - GLB	5.50"	5.50"	$1.75{ }^{\prime \prime}$	121	433/-31	554/-31	Blocking
2-Stud wall - HF	5.50"	5.50"	3.50"	323	1078	1401	Blocking
3 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ${ }^{1}$	$\begin{aligned} & 1.75^{\prime \prime} / \\ & 1.75^{\prime \prime} 2 \end{aligned}$	79	353/-64	432/-64	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- 1 See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
3 - Face Mount Hanger	$I U S 1.81 / 11.88$	2.00	N/A	10-10d	2-Strong-Grip	

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $32^{\prime} 81 / 2^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator

Eric L Rice
ELR Engineering
(206) 200-8764
elreng33@gmail.com

Floor-2, 2
1 piece(s) 11 7/8" TJI ${ }^{\circledR} 110 @ 16 " O C$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	480 @ $31 / 2^{\prime \prime}$	910 (1.75")	Passed (53\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	480 @ $31 / 2{ }^{\prime \prime}$	1560	Passed (31\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	1658 @ 7' $21 / 2^{\prime \prime}$	3160	Passed (52\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.154 @ 7' 2 1/2"	0.346	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.200 @ 7' 2 1/2"	0.692	Passed (L/830)	--	1.0 D + 1.0 L (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	51	Any	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240)
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' $5^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $14^{\prime} 1$ " o/c based on loads applied, unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of decking_2332Panels that is gluedAndNailedDown.
- Additional considerations for the TJ-Pro ${ }^{T M}$ Rating include: 5/8" Gypsum ceiling.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on 11 7/8" DF beam	3.50"	Hanger ${ }^{1}$	$\begin{aligned} & 1.755^{\prime \prime} / \\ & 1.755^{2} \end{aligned}$	115	384	499	See note ${ }^{1}$
2 - Stud wall - HF	5.50"	4.25"	1.75"	117	389	506	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS1.81/11.88	2.001	N/A	10-10d	2 -Strong-Grip	

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 6^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-2, 3

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$437 @ 15^{\prime} 1^{\prime \prime}$	$910\left(1.75{ }^{\prime \prime}\right)$	Passed (48\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Shear (lbs)	$437 @ 15^{\prime} 1^{\prime \prime}$	1560	Passed (28\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Moment (Ft-lbs)	$1377 @ 8^{\prime} 93 / 8^{\prime \prime}$	3160	Passed (44\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Live Load Defl. (in)	$0.135 @ 8^{\prime} 47 / 8^{\prime \prime}$	0.334	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (Alt Spans)
Total Load Defl. (in)	$0.156 @ 8^{\prime} 69 / 16^{\prime \prime}$	0.668	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	52	Any	Passed	--	--

System : Floor
Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $4^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 1 " o/c based on loads applied, unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of decking_2332Panels that is gluedAndNailedDown.
- Additional considerations for the TJ-Pro ${ }^{T M}$ Rating include: $5 / 8^{\prime \prime}$ Gypsum ceiling.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Stud wall - HF	5.50"	5.50"	3.50 "	373	454	231	1058	Blocking
2 - Hanger on 11 7/8" PSL beam	3.50"	Hanger ${ }^{1}$	$\begin{aligned} & 1.755^{\prime \prime} / \\ & 1.75 "^{\prime 2} \end{aligned}$	85	372	-24	457/-24	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	IUS1.81/11.88	2.00 "	N/A	10-10d	2-Strong-Grip	

Vertical Loads	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator

Floor-2, 4
1 piece(s) 3 1/2" x 11 7/8" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	6665 @ 9' 10"	7796 (5.50")	Passed (85\%)	--	1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	1873 @ 1' 5 3/8"	8035	Passed (23\%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	5813 @ 5' 1"	19902	Passed (29\%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.064 @ 5' 1"	0.237	Passed (L/999+)	--	1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Total Load Defl. (in)	0.114 @ 5' 1"	0.475	Passed (L/999+)	--	1.0 D + 0.75 L + 0.75 S (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 10' $2^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $10^{\prime} 2^{\prime \prime} \mathrm{o} / \mathrm{c}$ based on loads applied, unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Stud wall - HF	5.50"	5.50 "	2.05"	1274	1346/-244	826	$\begin{gathered} 3446 /- \\ 244 \end{gathered}$	Blocking
2-Stud wall - HF	5.50"	$5.50{ }^{\prime \prime}$	4.70"	3090	1346/-244	3421	$\begin{gathered} 7857 /- \\ 244 \end{gathered}$	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	Job
Eric L Rice	Clie
ELR Engineering	Pro
(206) 200-8764	
elreng33@gmail.com	

Job Notes
Client: Pebble Creek, LLC
Project: Pebble Creek - 1572-AB

Floor-2, 5
1 piece(s) 3 1/2" x 7 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2372 @ 0$	$3413(1.50 ")$	Passed (70\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	1836 @ 9"	4638	Passed (40\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$4628 @ 4^{\prime} 11 / 2^{\prime \prime}$	6563	Passed (71\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.150 @ 4^{\prime} 11 / 2^{\prime \prime}$	0.275	Passed (L/659)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.271 @ 4^{\prime} 11 / 2^{\prime \prime}$	0.412	Passed (L/366)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{0.75} \mathrm{~L} \mathrm{+} \mathrm{0.75} \mathrm{~S} \mathrm{(All} \mathrm{Spans)}$

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $8^{\prime} 3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8 ' 3 " o/c based on loads applied, unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=8^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)				
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50 "$	$1.50^{\prime \prime}$	1056	1188	567	2811	None
2 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50 "$	$1.50^{\prime \prime}$	1056	1188	567	2811	None

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-2, 6
1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	$835 @ 0$	3281 (1.50")	Passed (25\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1]
Shear (lbs)	$436 @ 83 / 4^{\prime \prime}$	3045	Passed (14\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) [1]
Moment (Ft-lbs)	$642 @ 1^{\prime} 71 / 2^{\prime \prime}$	2989	Passed (21\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) [1]
Live Load Defl. (in)	$0.004 @ 171 / 2^{\prime \prime}$	0.108	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1]
Total Load Defl. (in)	$0.007 @ 11^{\prime} 71 / 2^{\prime \prime}$	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1]

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240)
- Top Edge Bracing (Lu): Top compression edge must be braced at $3^{\prime} 3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3 ' 3 " o/c based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1-Trimmer - HF	1.50"	1.50"	1.50 "	360	430/-78	203	993/-78	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	360	430/-78	203	993/-78	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	Jo
Eric L Rice	Cli
ELR Engineering	Pro
(206) 200-8764	
elreng33@gmail.com	

Job Notes
Client: Pebble Creek, LLC
Project: Pebble Creek - 1572-AB

Floor-2, 7
1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1427 @ 0$	$3281(1.50 ")$	Passed (43\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$875 @ 83 / 4^{\prime \prime}$	3045	Passed (29\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1415 @ 2^{\prime} 11 / 2^{\prime \prime}$	2989	Passed (47\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.016 @ 22^{\prime} 11 / 2^{\prime \prime}$	0.142	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.028 @ 2^{\prime} 11 / 2^{\prime \prime}$	0.213	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' $3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $4^{\prime} 3^{\prime \prime} 0 / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1- Trimmer - HF	1.50"	1.50 "	1.50 "	608	724	368	1700	None
2 - Trimmer - HF	1.50"	1.50 "	1.50 "	608	724	368	1700	None

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	J ob
Eric L Rice	Clie
ELR Engineering	Pro
(206) 200-8764	
elreng33@gmail.com	

Job Notes
Client: Pebble Creek, LLC
Project: Pebble Creek - 1572-AB

Floor-2, 8
1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$636 @ 4^{\prime} 1 / 2^{\prime \prime}$	$3281(1.50 ")$	Passed (19\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$429 @ 3^{\prime} 51 / 4^{\prime \prime}$	3502	Passed (12\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	$590 @ 2^{\prime} 21 / 4^{\prime \prime}$	3438	Passed (17\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.005 @ 2^{\prime} 21 / 4^{\prime \prime}$	0.124	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.008 @ 2^{\prime} 21 / 4^{\prime \prime}$	0.185	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

System : Roof
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' 1" o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 1 " o/c based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Total	Accessories
1-Column - HF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.50^{\prime \prime}$	290	460	750	Blocking
2 - Hanger on 71/4" HF beam	$5.50^{\prime \prime}$	Hanger 1	$1.50 "$	304	487	791	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	HUC48	2.50 "	N/A	10-10d	$4-10 \mathrm{~d}$	

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $4^{\prime} 1 / 2^{\prime \prime}$	N / A	6.4	--	
1 - Uniform (PSF)	0 to $4^{\prime} 6^{\prime \prime}(T o p)$	$8^{\prime} 5{ }^{\prime \prime}$	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-2, 9-A

1 piece(s) 5 1/2" x 16 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	8092 @ 4"	19663 (5.50")	Passed (41\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1]
Shear (lbs)	7026 @ $1^{\prime} 10^{\prime \prime}$	18437	Passed (38\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1]
Pos Moment (Ft-lbs)	$50127 @ 9^{\prime} 11^{\prime \prime}$	55620	Passed (90\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) [1]
Live Load Defl. (in)	$0.441 @ 10^{\prime} 11 / 2^{\prime \prime}$	0.650	Passed (L/530)	--	$1.0 \mathrm{D}+1.0$ S (All Spans) [1]
Total Load Defl. (in)	$0.813 @ 10^{\prime} 15 / 16^{\prime \prime}$	0.975	Passed (L/288)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) [1]

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $20^{\prime} 2^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $20^{\prime} 2 \mathrm{l}$ o/c based on loads applied, unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 0.97 that was calculated using length $L=19^{\prime} 6^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Column - DF	5.50"	5.50"	2.26 "	3474	2456/-176	3701	$\begin{gathered} 9631 /- \\ 176 \end{gathered}$	Blocking
2 - Column - DF	5.50"	5.50 "	2.06"	3244	765/-55	4124	$\begin{gathered} 8133 /- \\ 55 \end{gathered}$	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	J ob
Eric L Rice	Clie
ELR Engineering	Pro
(206) 200-8764	
elreng33@gmail.com	

Floor-2, 9-B

1 piece(s) 5 1/2" $\mathbf{x} 16$ 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	8014 @ 4"	19663 (5.50")	Passed (41\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1]
Shear (lbs)	6948 @ $1^{\prime} 10^{\prime \prime}$	18437	Passed (38\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1]
Pos Moment (Ft-lbs)	$49240 @ 9^{\prime} 11^{\prime \prime}$	55620	Passed (89\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) [1]
Live Load Defl. (in)	$0.433 @ 10^{\prime} 11 / 2^{\prime \prime}$	0.650	Passed (L/541)	--	$1.0 \mathrm{D}+1.0$ S (All Spans) [1]
Total Load Defl. (in)	$0.800 @ 10^{\prime} 15 / 16^{\prime \prime}$	0.975	Passed (L/293)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) [1]

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $20^{\prime} 2^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 20' 2 " o/c based on loads applied, unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 0.97 that was calculated using length $L=19^{\prime} 6^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Column - DF	5.50"	5.50"	2.24 "	3440	2456/-176	3643	$\begin{gathered} 9539 /- \\ 176 \end{gathered}$	Blocking
2 - Column - DF	5.50"	5.50"	2.04"	3211	765/-55	4067	$\begin{gathered} 8043 /- \\ 55 \end{gathered}$	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead $(\mathbf{0 . 9 0})$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-2, 10

1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1567 @ 6^{\prime \prime}$	3281 (1.50")	Passed (48\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1084 @ 1^{\prime} 11^{\prime \prime} 4^{\prime \prime}$	3045	Passed (36\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1706 @ 2^{\prime} 10^{\prime \prime}$	2989	Passed (57\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.023 @ 2^{\prime} 10^{\prime \prime}$	0.156	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.040 @ 2^{\prime} 10^{\prime \prime}$	0.233	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' 8 " o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 8 " o/c based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1-Hanger on $71 / 4^{\prime \prime} \mathrm{HF}$ beam	6.00"	Hanger ${ }^{1}$	1.50 "	808	965	491	2264	See note ${ }^{1}$
2 - Hanger on $71 / 4$ HF beam	6.00"	Hanger ${ }^{1}$	1.50"	808	965	491	2264	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HUC48	$2.50 "$	$\mathrm{~N} / \mathrm{A}$	$14-10 \mathrm{~d}$	6	
2 - Face Mount Hanger	HUC48	$2.50 "$	$\mathrm{~N} / \mathrm{A}$	10 d		

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$6^{\prime \prime}$ to $5^{\prime} 2^{\prime \prime}$	N/A	6.4	--	--	
1 - Uniform (PLF)	0 to $5^{\prime} 8^{\prime \prime}(T o p)$	N/A	279.8	340.5	173.3	Linked from: 3, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-2, 11-A
1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$4044 @ 32^{\prime} 21 / 2^{\prime \prime}$	$4922(1.50 ")$	Passed (82\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Shear (lbs)	$7748 @ 16^{\prime} 115 / 8^{\prime \prime}$	13861	Passed (56\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Moment (Ft-lbs)	$-27462 @ 18^{\prime} 5^{\prime \prime}$	34332	Passed (80\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.427 @ 8^{\prime} 73 / 16^{\prime \prime}$	0.603	Passed (L/508)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	$0.738 @ 8^{\prime} 61 / 16^{\prime \prime}$	0.904	Passed (L/294)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $32^{\prime} 3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $32^{\prime} 3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Beam - GLB	5.50"	5.50"	1.92"	2786	3514	6300	Blocking
2 - Column Cap - steel	11.00"	11.00"	5.05"	7486	9097	16583	Blocking
3 - Hanger on $117 / 8^{\prime \prime}$ PSL beam	5.50 "	Hanger ${ }^{1}$	1.50"	1816	2595	4411	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
3- Face Mount Hanger	HUCQ612-SDS	3.00	N/A	14-SDS25212	6-SDS25212	

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $\mathbf{(1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $32^{\prime} 21 / 2^{\prime \prime}$	N / A	19.5	--	
1 - Uniform (PSF)	0 to $32^{\prime} 8^{\prime \prime}(\mathrm{Top})$	13^{\prime}	15.0	25.0	
2 - Uniform (PSF)	0 to $32^{\prime} 8^{\prime \prime}(\mathrm{Top})$	$8^{\prime} 1^{\prime \prime}$	10.0	-	
3 - Uniform (PSF)	0 to $32^{\prime} 8^{\prime \prime}(\mathrm{Top})$	5^{\prime}	15.0	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-2, 11-B
1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$16936 @ 18^{\prime} 5^{\prime \prime}$	36094 (11.00")	Passed (47\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$7934 @ 16^{\prime} 115 / 8^{\prime \prime}$	13861	Passed (57\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$-27630 @ 18^{\prime} 5^{\prime \prime}$	34332	Passed (80\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.432 @ 8^{\prime} 913 / 16^{\prime \prime}$	0.603	Passed (L/503)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	$0.746 @ 8^{\prime} 81 / 2^{\prime \prime}$	0.904	Passed (L/291)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $32^{\prime} 3^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 32 ' $3^{\prime \prime} \mathrm{o} / \mathrm{c}$ based on loads applied, unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Beam - GLB	5.50"	5.50"	1.50"	1984	2174	4158	Blocking
2 - Column Cap - steel	11.00"	11.00"	$5.16{ }^{\prime \prime}$	7619	9318	16937	Blocking
3 - Hanger on $117 / 8^{\prime \prime}$ PSL beam	5.50 "	Hanger ${ }^{1}$	1.50"	936	1137/-1	2073/-1	See note ${ }^{1}$

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
3 - Face Mount Hanger	HUC610	$2.50 "$	N/A	14-16d	6-16d	

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	$\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$	Comments
0 - Self Weight (PLF)	0 to 32' $21 / 2^{\prime \prime}$	N/A	19.5	--	
1 - Uniform (PSF)	8' $\mathbf{2 ' ~}^{\prime \prime}$ to 24' 6" (Top)	$13 '$	15.0	25.0	
2 - Uniform (PSF)	0 to 32' 8" (Top)	8'1"	10.0	-	
3 - Uniform (PSF)	$7^{\prime} 8^{\prime \prime}$ to 22' $8^{\prime \prime}$ (Top)	$5 '$	15.0	25.0	
4 - Tapered (PSF)	0 to 8' ${ }^{\prime \prime}$ (Top)	1^{\prime} to 5^{\prime}	15.0	25.0	
5 - Tapered (PSF)	24' 6" to 32' 8" (Top)	5' to 1^{\prime}	15.0	25.0	
6 - Tapered (PSF)	0 to 7' 8" (Top)	0 to 5^{\prime}	15.0	25.0	
7 - Tapered (PSF)	22' 8" to 32' 8" (Top)	5 ' to 0	15.0	25.0	
8 - Point (lb)	8' $2^{\prime \prime}$ (Top)	N/A	780	1300	
9 - Point (lb)	24' 6" (Top)	N/A	780	1300	

Project Title:
1915 Dayton Ave NE
Engineer: ELR
Renton, WA 98056
Project ID:
phone: 206.200.8764
Project Descr:
email: elreng33@gmail.com

Wood Column

Code References

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : ASCE 7-10

General Information

Load Combination Results

Load Combination	$C_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.823	0.4894	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+S	1.150	0.761	0.9174	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+0.750S	1.150	0.761	0.7917	PASS	0.0 ft	0.0	PASS	9.0 ft
+0.60D	1.600	0.651	0.2088	PASS	0.0 ft	0.0	PASS	9.0 ft

ELR Engineering
1915 Dayton Ave NE
Renton, WA 98056
phone: 206.200.8764
email: elreng33@gmail.com

Project Title:
Engineer: ELR
Project ID:
Project Descr:

DESCRIPTION: +)> Post for Floor-2-11B
Sketches

Floor-2, 12
1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5177 @ 17^{\prime} 11 / 2^{\prime \prime}$	$10725\left(3.00{ }^{\prime \prime}\right)$	Passed (48\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$4135 @ 15^{\prime} 101 / 2^{\prime \prime}$	15085	Passed (27\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Pos Moment (Ft-lbs)	$17036 @ 10^{\prime} 51 / 16^{\prime \prime}$	38424	Passed (44\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.243 @ 9^{\prime} 13 / 4^{\prime \prime}$	0.567	Passed (L/838)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.406 @ 9^{\prime} 11 / 2^{\prime \prime}$	0.850	Passed (L/502)	--	1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $17^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $17^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=17^{\prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - HF	3.00"	3.00"	1.50 "	967	1352	2319	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	2039	3138	5177	None

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ \mathbf{(0 . 9 0)} \end{gathered}$	$\begin{gathered} \text { Snow } \\ \text { (1.15) } \end{gathered}$	Comments
0 - Self Weight (PLF)	0 to 17' 3"	N/A	18.0	--	
1 - Uniform (PSF)	8' $61 / 2^{\prime \prime}$ to 17' $3^{\prime \prime}$	18' 6"	15.0	25.0	Default Load
2 - Uniform (PSF)	0 to 8' $61 / 2^{\prime \prime}$	2' 2 "	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-1	Results	Current Solution	Comments
Member Name	Passed	1 piece(s) 2×10 Hem-Fir No. 2 @ $16 "$ OC	
1	Passed	1 piece(s) 4×8 Douglas Fir-Larch No. 2	
2	Passed	1 piece(s) 2×8 Hem-Fir No. 2 @ $16{ }^{\prime \prime}$ OC	
3 -option	Passed	1 piece(s) 4×10 Hem-Fir No. 2	
4 -option			

ForteWEB Software Operator	Job Notes
Eric L Rice	Client: Pebble Creek, LLC
ELR Engineering	Project: Pebble Creek - 1572-AB
(206) 200-8764	
elreng33@gmail.com	

Floor-1, 1
1 piece(s) 2×10 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	494 @ 4 1/2"	2430 (4.00")	Passed (20\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	417 @ 1' 2 3/4"	1388	Passed (30\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	1639 @ 7' 3"	1917	Passed (85\%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.334 @ 7' 3"	0.458	Passed (L/495)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.434 @ 7' 3"	0.688	Passed (L/381)	--	1.0 D + 1.0 L (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A

System : Floor
Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240)
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' 8 " o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $14^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Plate on concrete - HF	5.50"	4.00"	1.50 "	116	387	503	1 1/2" Rim Board
2 - Plate on concrete - HF	5.50"	4.00"	1.50"	116	387	503	1 1/2" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 6^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-1, 2
1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$6481 @ 66^{\prime \prime}$	$9844(4.50 ")$	Passed (66\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Adj Spans)
Shear (Ibs)	$2300 @ 77^{\prime} 21 / 2^{\prime \prime}$	3045	Passed (76\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Adj Spans)
Moment (Ft-lbs)	$-2874 @ 6^{\prime} 5{ }^{\prime \prime}$	2989	Passed (96\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Adj Spans)
Live Load Defl. (in)	$0.060 @ 0$	0.200	Passed (2L/730)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)
Total Load Defl. (in)	$0.063 @ 0$	0.200	Passed (2L/688)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: $\mathrm{LL}\left(2 \mathrm{~L} / 0.2^{\prime \prime}\right)$ and $\mathrm{TL}\left(2 \mathrm{~L} / 0.2^{\prime \prime}\right)$.
- Top Edge Bracing (Lu): Top compression edge must be braced at $12^{\prime} 10^{\prime \prime} 0 / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $12^{\prime} 10^{\prime \prime} \mathrm{o} / \mathrm{c}$ based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Column - HF	4.50"	4.50"	2.33"	1365	3722	5087	Blocking
2-Column - HF	4.50"	4.50"	2.96"	1570	4911	6481	Blocking
3 - Column - HF	4.50"	4.50"	2.33"	1365	3722	5087	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	$\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 12' $10^{\prime \prime}$	N/A	6.4	--	
1 - Uniform (PSF)	0 to 12' 10" (Top)	10'8"	12.0	40.0	Default Load
2 - Uniform (PSF)	0 to 12' 10" (Top)	$9^{\prime} 1{ }^{\prime \prime}$	8.0	-	
3 - Uniform (PSF)	0 to 12' 10" (Top)	10'8"	12.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Floor-1, 3-option
1 piece(s) 2×8 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$367 @ 11 / 2^{\prime \prime}$	$911(1.50 ")$	Passed (40\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$293 @ 83 / 4^{\prime \prime}$	1088	Passed (27\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$666 @ 3^{\prime} 111 / 2^{\prime \prime}$	1284	Passed (52\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.107 @ 3^{\prime} 111 / 2^{\prime \prime}$	0.192	Passed (L/862)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.120 @ 3111 / 2^{\prime \prime}$	0.383	Passed (L/766)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	N / A	N / A	N / A	--	N / A

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 7' 9 " o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' $9 \mathrm{~g} \circ \mathrm{olc}$ based on loads applied, unless detailed otherwise.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $71 / 4$ " HF beam	1.50"	Hanger ${ }^{1}$	1.50"	42	317	132	491	See note ${ }^{1}$
2 - Beam - HF	3.50"	2.25 "	1.50"	43	323	135	501	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A		

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Snow $(\mathbf{1 . 1 5)}$	Comments
1- Uniform (PSF)	0 to 8^{\prime}	$16^{\prime \prime}$	8.0	60.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD
\qquad

Floor-1, 4-option
1 piece(s) 4×10 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1668 @ 2 "$	4961 (3.50")	Passed (34\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1257 @ 1^{\prime} 3 / 4^{\prime \prime}$	3238	Passed (39\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$3780 @ 5^{\prime} 1^{\prime \prime}$	4242	Passed (89\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.181 @ 5^{\prime} 1^{\prime \prime}$	0.328	Passed (L/653)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.230 @ 5^{\prime} 1^{\prime \prime}$	0.492	Passed (L/513)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $10^{\prime} 2^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $10^{\prime} 2^{\prime \prime}$ o/c based on loads applied, unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1-Column - HF	3.50 "	3.50 "	1.50 "	358	1231	515	2104	Blocking
2 - Column - HF	3.50 "	3.50 "	1.50 "	358	1231	515	2104	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Project Title:
1915 Dayton Ave NE
Engineer: ELR
Renton, WA 98056
Project ID:
phone: 206.200.8764
Project Descr:
email: elreng33@gmail.com

Wood Column

DESCRIPTION: +)> Rear deck option - 4×4 post
Code References
Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : ASCE 7-10

General Information

Analysis Method End Fixities	Allowable Stress Design			Wood Section Name Wood Grading/Manuf.		4x4			
	Top \& Bottom Pinned					Graded Lumber			
Overall Column Height		ulations)	10 ft	Wood Member Type		Sawn			
Wood Species	(Used for non-slender calculations)			Exact Width		3.50 in Allow Stress Modification Factors			
Wood Grade	No. 2			Exact Depth		3.50 in	Cf or Cv for Bending Cf or Cv for Compression	$\begin{array}{r} 1.50 \\ 1.150 \end{array}$	
$\mathrm{Fb}+$	850 psi	Fv	150 p	Ix		$12.250 \mathrm{in}^{\wedge} 2$ $12.505 \mathrm{in}^{\wedge} 4$	Cf or Cv for Tension	1.150 1.50	
$\mathrm{Fb}-$	850 psi	Ft	52526.84		ly	$12.505 \mathrm{in}^{\wedge} 4$	Cm : Wet Use Factor	1.0	
Fc - Prll	1300 psi	Density		Incising Factors :			Ct : Temperature Factor	1.0	
E : Modulus of Elasticity ...		$x-x$ Bending		Axial	for Bending	0.80	Cfu : Flat Use Factor	1.0	
		y-y Bending	for Elastic Modulus		0.95	Kf : Built-up columns	1.0 NDS 15.3.2		
	Basic		1300	1300	1300 ksi			Use Cr : Repetitive?	No
Minimum		470	470	Brace condition for deflection (buckling) along columns :					
		X-X (width) axis :		Unbraced Length for buckling ABOUT Y-Y Axis $=10 \mathrm{ft}, \mathrm{K}=1.0$					
		Y-Y (depth) axis :		Unbraced Length for buckling ABOUT X-X Axis $=10 \mathrm{ft}, \mathrm{K}=1.0$					

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 22.833 lbs * Dead Load Factor
AXIAL LOADS . . .
Axial Load at $10.0 \mathrm{ft}, \mathrm{D}=0.3580, \mathrm{~L}=1.231, \mathrm{~S}=0.5150 \mathrm{k}$
BENDING LOADS . . .
Lat. Point Load at 5.0 ft creating $\mathrm{Mx}-\mathrm{x}, \mathrm{W}=0.250 \mathrm{k}$
DESIGN SUMMARY
Bending \& Shear Check Results

Load Combination Results

Load Combination	C_{D}	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.283	0.1021	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+L	1.000	0.257	0.4280	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.226	0.2355	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750L	1.250	0.209	0.3410	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750L+0.750S	1.150	0.226	0.4443	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.60W	1.600	0.165	0.4330	PASS	5.034 ft	0.04783	PASS	4.966 ft
+D+0.750L+0.450W	1.600	0.165	0.5386	PASS	5.034 ft	0.03587	PASS	10.0 ft
+D+0.750L+0.750S+0.450W	1.600	0.165	0.6860	PASS	5.034 ft	0.03587	PASS	10.0 ft
$+0.60 \mathrm{D}+0.60 \mathrm{~W}$	1.600	0.165	0.4098	PASS	5.034 ft	0.04783	PASS	4.966 ft

DESCRIPTION: +)> Rear deck option - 4×4 post
Load Combination Results

			Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
Load Combination	$C_{\text {D }}$	C_{P}	Stress Ratio	Status	Location	Stress Ratio	Status	Location
+0.60D	1.600	0.165	0.0590	PASS	0.0 ft	0.0	PASS	10.0 ft

Sketches

ELR Engineering
1915 Dayton Ave NE
Renton, WA 98056 phone: (206) 200-8764
email: elreng33@gmail.com

Lateral Calculations

Project Title:

Resisting System

Basic Seismic Force Resisting System . . .

Response Modification Coefficient " R "

Bearing Wall Systems
13.Light-frame (wood) walls sheathed w/wood structural panels rated for shear resistance.

Deflection Amplification Factor " Cd "	$=$	3.00
	4.00	

NOTE! See ASCE 7-10 for all applicable footnotes.

Category "A \& B" Limit: No Limit
Category "C" Limit: \quad No Limit
Category "D" Limit: Limit = 65
Category "E" Limit: \quad Limit $=65$
Category "F" Limit: \quad Limit $=65$

Lateral Force Procedure

Equivalent Lateral Force Procedure
The "Equivalent Lateral Force Procedure" is being used according to the provisions of ASCE 7-10 12.8

ASCE Seismic Base Shear

> ASCE 7 -10 wind forces

Basic Values

Risk Category	2 per ASCE 7-10 Table 1.5.1	Horizontal Dim. in North-South Direction (B or L) $=$	37.0 ft V : Basic Wind Speed
Kd : Directionality Factor	110.0	Horizontal Dim. in East-West Direction $(\mathrm{B}$ or L)	$=$
34.0 ft			

Exposure Category

 per ASCE 7-10 Section 26.7 Topographic Factor per ASCE 7-10 Sec 26.8 \& Figure 26.8-1| North: | Exposure B | East: | Exposure B | North: K1 $=$ | K2 $=$ | K3 $=$ | Kzt $=1.000$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| South: | Exposure B | West: | Exposure B | South: K1 $=$ | K2 $=$ | K3 $=$ | Kzt $=$ |
| | | | East: K1 $=$ | K2 $=$ | K3 $=$ | Kzt $=1.000$ | |
| | | West: K1 $=$ | K2 $=$ | K3 $=$ | Kzt $=1.000$ | | |

User has specified the building frequency is $>=1 \mathrm{~Hz}$, therefore considered RIGID for both North-South and East-West directions.

Building Story Data

	hi	Story Ht	$\mathrm{E}_{\mathrm{R}}: \mathrm{X}$	$\mathrm{E}_{\mathrm{R}}: \mathrm{X}$
Level Description	ft	ft	ft	ft
Upper	18.92	9.17	0.000	0.000
Lower	9.75	9.75	0.000	0.000

Gust Factor	For wind coming from direction indicated			
		0.850	South $=$	0.850
North $=$	0.850	West $=$	0.850	

Enclosure

Check if Building Qualifies as "Open"

	North Wall	South Wall	East Wall	West Wall	Roof	Total
Agross	$643.0 \mathrm{ft}^{\wedge} 2$	$643.0 \mathrm{ft}^{\wedge} 2$	$700.0 \mathrm{ft}^{\wedge} 2$	$700.0 \mathrm{ft}^{\text {2 }}$	966.0 ft^2	3,652.0 ft^2
Aopenings	$\mathrm{ft}^{\wedge} 2$	ft^{\wedge}	ft^{\wedge}	ft^{\wedge}	ft^{\wedge}	$0.0 \mathrm{ft}^{\wedge} 2$
Aopenings >= 0.8 * Agross ?	No	No	No	No		

All four Agross values must be non-zero Building does NOT qualify as "Open"
User has specified the Building is to be considered Enclosed when NORTH elevation receives positive external pressure User has specified the Building is to be considered Enclosed when SOUTH elevation receives positive external pressure User has specified the Building is to be considered Enclosed when EAST elevation receives positive external pressure User has specified the Building is to be considered Enclosed when WEST elevation receives positive external pressure Velocity Pressures
When the following walls experience leeward or sidewall pressures, the value of Kh shall be (per Table 27.3-1) :
North Wall $=0.6418 \mathrm{psf} \quad$ South Wall $=0.6418 \mathrm{psf} \quad$ East Wall $=\quad 0.6418 \mathrm{psf} \quad$ West Wall $=\quad 0.6418 \mathrm{psf}$

When the following walls experience leeward or sidewall pressures, the value of qh shall be (per Table 27.3-1) :
North Wall $=\quad 16.90$ psf \quad South Wall $=16.90 \mathrm{psf} \quad$ East Wall $=\quad 16.90 \mathrm{psf} \quad$ West Wall $=\quad 16.90 \mathrm{psf}$
qz : Windward Wall Velocity Pressures at various heights per Eq. 27.3-1

	North Elevation		South Elevation		East Elevation		West Elevation	
Height Above Base (ft)	Kz	qz	Kz	qz	Kz	qz	Kz	qz
0.00	0.575	15.13	0.575	15.13	0.575	15.13	0.575	15.13
4.00	0.575	15.13	0.575	15.13	0.575	15.13	0.575	
8.00	0.575	15.13	0.575	15.13	0.575	15.13	15.13	
12.00	0.575	15.13	0.575	15.13	0.575	15.13	0.575	15.13
							0.575	15.13

DESCRIPTION: > ASCE 7-10 Wind Load Determination

16.00	0.585	15.41	0.585	15.41	0.585	15.41	0.585
20.00	0.624	16.43	0.624	16.43	0.624	16.43	0.624
Pressure Coefficients				GCpi Values when elevation receives positive external pressure			

GCpi : Internal pressure coefficient, per sec. 26.11 and Table 26.11-1

Specify Cp Values from Figure 27.4-1 for Windward, Leeward \& Side Walls
Cp Values when elevation receives positive external pressure

	North		South	East
Windward Wall	0.80	0.80	0.80	West
Leeward Wall	-0.480	-0.480	-0.50	-0.80
Side Walls	-0.70	-0.70	-0.70	-0.70

User Defined Roof locations and Net Directional Pressure Coefficients : Cp or Cn
Cp or Cn Values when the indicated building elevation receives positive external pressure

Description	North	South	East	West
Perp: windward			-0.330	-0.330
Perp: leeward		-0.60	-0.60	
Perp: windward	-0.250	-0.250		
Perp: leeward	-0.60	-0.60		
Perp: windward	0.20	0.20	0.150	0.150
Perp: windward				
Wind Pressures				

Wind Pressures when NORTH Elevation receives positive external wind pressure

	Positive Internal	Negative Internal	
Leeward Wall Pressures	-9.937 psf	$-3.853 \mathrm{psf}$	
Side Wall Pressures	-13.097 psf	-7.013 psf	
Windward Wall Pressures Height Above Base (ft)	Positive Intern Pressure (ps)	Negative InternalPressure (psf)	
0.00		7.25	13.33
4.00		7.25	13.33
8.00		7.25	13.33
12.00		7.25	13.33
16.00		7.44	13.52
20.00		8.13	14.21
Roof Pressures . . . Description		Positive Interna Pressure (psf)	Negative Internal Pressure (psf)
Perp: windward		-6.63	-0.55
Perp: leeward		-11.66	-5.58
Perp: windward		-0.17	5.91

Wind Pressures when SOUTH Elevation receives positive external wind pressure

	Positive Internal	Negative Internal
Leeward Wall Pressures	-9.937 psf	$-3.853 \mathrm{psf}$
Side Wall Pressures	-13.097 psf	-7.013 psf
Windward Wall Pressures Height Above Base (ft)	Positive Internal Pressure (psf)	Negative Internal Pressure (psf)

DESCRIPTION: > ASCE 7-10 Wind Load Determination

0.00	7.25	13.33
4.00	7.25	13.33
8.00	7.25	13.33
12.00	7.25	13.33
16.00	7.44	13.52
20.00	8.13	14.21
Roof Pressures ...	Positive Internal	Negative Internal
Description	Pressure (psf)	Pressure (psf)
Perp: windward	-6.63	-0.55
Perp: leeward	-11.66	-5.58
Perp: windward	-0.17	5.91

Wind Pressures when EAST Elevation receives positive external wind pressure

	Positive Internal	Negative Internal	
Leeward Wall Pressures	-10.224 psf	-4.140 psf	
Side Wall Pressures	-13.097 psf	-7.013 psf	
Windward Wall Pressures Height Above Base (ft)	Positive Interna Pressure (psf)	Negative Internal Pressure (psf)	
0.00			13.33
4.00			13.33
8.00			13.33
12.00			13.33
16.00			13.52
20.00			14.21
Roof Pressures . . . Description		$\begin{gathered} \text { Iternal } \\ \text { (psf) } \end{gathered}$	Negative Internal Pressure (psf)
Perp: windward			-1.70
Perp: leeward			-5.58
Perp: windward			5.20

Wind Pressures when WEST Elevation receives positive external wind pressure

	Positive Internal	Negative Internal	
Leeward Wall Pressures	-10.224 psf	$-4.140 \mathrm{psf}$	
Side Wall Pressures	-13.097 psf		
Windward Wall Pressures Height Above Base (ft)	Positive Interna Pressure (psf)	Negative Internal Pressure (psf)	
0.00		7.25	13.33
4.00		7.25	13.33
8.00		7.25	13.33
12.00		7.25	13.33
16.00		7.44	13.52
20.00		8.13	14.21
Roof Pressures . . . Description		ositive Internal Pressure (psf)	Negative Internal Pressure (psf)
Perp: windward		-7.78	-1.70
Perp: leeward		-11.66	-5.58
Perp: windward		-0.89	5.20

Project Title:
Engineer: ELR
Renton, WA 98056
Project ID:
phone: 206.200.8764
Project Descr:

ASCE 7-10 Wind Forces, Chapter 27, Part I

Story Forces for Design Wind Load Cases

Values below are calculated based on a building with dimensions B x L x h as defined on the "Basic Values" tab.

DESCRIPTION: > ASCE 7-10 Wind Load Determination

| Min per ASCE 27.4.7 \quad West | Level 1.88^{\prime}-> | 14.34' |
| :--- | :--- | :--- | :--- | :--- |

Base Shear for Design Wind Load Cases

Values below are calculated based on a building with dimensions BxLxh as defined on the "General" tab.

Load Case	Windward Wall	Leeward Wall	Wind Base S In " Y " Direction	Components (k) In "X" Direction		Mt, (ft-k)	West	+X
Case 1	North	South	-8.25	---		---		
Case 1	South	North	8.25	---		---		
Case 1	East	West	---	-9.13		---		
Case 1	West	East	---	9.13		---		
Case 2	North	South	-6.19	---	+/-	31.6		
Case 2	South	North	6.19	---	+/-	31.6		
Case 2	East	West	---	-6.85	+/-	38.0		
Case 2	West	East	---	6.85	+/-	38.0		
Case 3	North \& East	South \& West	-6.19	-6.85		---		
Case 3	North \& West	South \& East	-6.19	6.85		---		
Case 3	South \& West	North \& East	6.19	6.85		---		
Case 3	South \& East	North \& West	6.19	-6.85		---		
Case 4	North \& East	South \& West	-4.65	-5.14	+/-	52.2		
Case 4	North \& West	South \& East	-4.65	5.14	+/-	52.2		
Case 4	South \& West	North \& East	4.65	5.14	+/-	52.2		
Case 4	South \& East	North \& West	4.65	-5.14	+/-	52.2		
Min per ASCE 27.4.7	North	South	-7.64	---		---		
Min per ASCE 27.4.7	South	North	7.64	---		---		
Min per ASCE 27.4.7	East	West	---	-8.31		---		
Min per ASCE 27.4.7	West	East	---	8.31		---		

LATERA	ING				Story/base she	and diaph	m forces						rho (ρ)	Client:	MTT/PC, LLC
		Wind (E-W loads)	Wind (N -S loads)	Seismic		WIND	0.6			Sds	SEISMIC	0.7	1.3	Project:	1572-AB
	Hstory	B (<N-S>)	L (<E-W >)	Alevel		N-S loads	E-W loads	Fpy (N -S)	Fpx (E-W)	1.053	N-S loads	E-W loads	Fpxy (both)	Date:	3/5/2020
Roof		36.5	24	966	$\mathrm{Pw} \times \mathrm{B} \times \mathrm{L}=$	1.93	2.98	1.93	2.98	$\mathrm{Cs} \times \mathrm{W}=$	4.92	4.92	4.92	Revised:	
	8.08													Description:	Wind/EQ Design
Roof-1		37	34	1375	$\mathrm{Pw} \times \mathrm{B} \times \mathrm{L}=$	5.53	6.12	5.53	6.12	$\mathrm{Cs} \times \mathrm{W}=$	4.01	4.01	7.12	Code:	AWC-SDPWS-2015
	9.08														
Roof-2		0	0	0	$\mathrm{Pw} \times \mathrm{B} \times \mathrm{L}=$	0.00	0.00	0.00	0.00	$\mathrm{Cs} \times \mathrm{W}=$	0.00	0.00	0.00		
0.00 Base shear >															
					$\mathrm{Pw} \times \mathrm{B} \times \mathrm{L}=$	7.46	9.10			$\mathrm{Cs} \times \mathrm{W}=$	8.93	8.93			
					$\times 0.6$	4.47	5.46	kips		$\times \rho \times 0.7$	8.13	8.13	kips	check:	OK

Roof-1	N-S loads	Grid	trib. width	trib. area	Fwind	Fseismic	L1	L2	L3	L4	L5	L6	Vwind(plf)	Vwind(plf)	Vseismic(plf)	Vseismic(plf)
$\min \mathrm{Li}=$	< H^{\prime} (if applies)	8														
	< H^{\prime} (if applies)	7														
	< H^{\prime} (if applies)	6														
	< H'(if applies)	5														
	< H'(if applies)	4	9.83	407	1.25	2.20	35.00						36		63	
	< H'(if applies)	3														
	< H'(if applies)	2	17.17	681	1.96	2.93	16.83						117		174	
	< H^{\prime} (if applies)	1	7.00	287	1.26	3.00	13.83	14.50					45		106	
	2.595	OK	34	1375	4.47 8.13											
				OK												
	E-W $\overline{\text { loads }}$	Grid	trib. width	trib. area	Fwind	Fseismic	L1	L2	L3	L4	L5	L6	$\overline{\mathrm{V}}$ Wind(pif)	Vwind(pif)	Vseismic(pif)	Vseismic(plf)
	< H^{\prime} (if applies)	H														
	< H'(if applies)	G														
	< H^{\prime} (if applies)	F														
	< H^{\prime} (if applies)	E														
	< H^{\prime} (if applies)	D	9.17	298	1.71	2.88	13.83	10.00					72		121	
	< H^{\prime} (if applies)	C	17.50	613	1.86	1.92	19.17						97		100	
	< H^{\prime} (if applies)	B														
$\min \mathrm{Li}=$	< H^{\prime} (if applies)	A	10.33	464	1.89	3.32	9.17	1.83	2.00				145		255	
	2.595	OK	37	1375	5.46											
				ок		8.13										

[^0]ELR Engineering
1915 Dayton Ave NE
Renton, WA 98056
206.200.0764
elreng33@gmail.com

Design Summary

Req. Sheathing Capacity Req. Strap Force Req. HD Force (net)	173 plf	< Seismic controls Seismic controls < Seismic controls	W6	applied to one side of wall above and below window x < Input holdown here	120	inches long
	370 lbf		CS22			
	343 lbf		NONE			

Check Summary of Shear Values for One Opening

Line 1: vc1(ha1+hb1)+V1(ho1)=H?	523	721	
Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?	1244 lbf		
Line 3: vc2(ha1+hb1)+V2(ho1)=H?	0	523	721

Req. Sheathing Capacity	180 plf	Seismic controls	W6			
Req. Strap Force	427 lbf	Seismic controls	CS22	applied to one side of wall above and below window x	162.96	inches long
Req. HD Force (net)	765 lbf	Seismic controls	NONE	< Input holdown here		

Check Summary of Shear Values for One Opening

Line 1: vc1(ha1+hb1)+V1(ho1)=H?	50	2270	
Line 2: va1(ha1+hb1)-vc1(ha1+hb1)-V1(ho1)=0?	2320 lbf		
Line 3: vc2(ha1+hb1)+V2(ho1)=H?	2320	50	2270

Design Summary

Req. Sheathing Capacity Req. Strap Force Req. HD Force (net)	454 plf	< Seismic controls Seismic controls < Seismic controls	W3	applied to one side of wall above and below window x < Input holdown here	110.04	inches long
	1139 lbf		CS18			
	2064 lbf		STHD14RJ			

Design Summary

Req. Sheathing Capacity Req. Strap Force Req. HD Force (net)	289 plf	< Seismic controls Seismic controls < Seismic controls	W4	applied to one side of wall above and below window x < Input holdown here	165.96	inches long
	1258 lbf		CS18			
	54 lbf		NONE			

[^0]: ELR Engineering
 915 Da, WA 98056
 206.200.8764
 elreng33@gmail.com

