

BASIC PERMIT PACKAGE REVIEWED FOR CODE COMPLIANCE WITH IRC 2015 KITSAP COUNTY BUILDING DEPARTMENT

Reviewed for code compliance with IRC 2015 Kitsap County Building Department lasmith@co.kitsap.wa.us 10/02/2020

STRUCTURAL CALCULATIONS

for the

PROPOSED RUEPPELL HOME DESIGN

PLAN 1572-AB W/OPTIONS

April 16, 2020

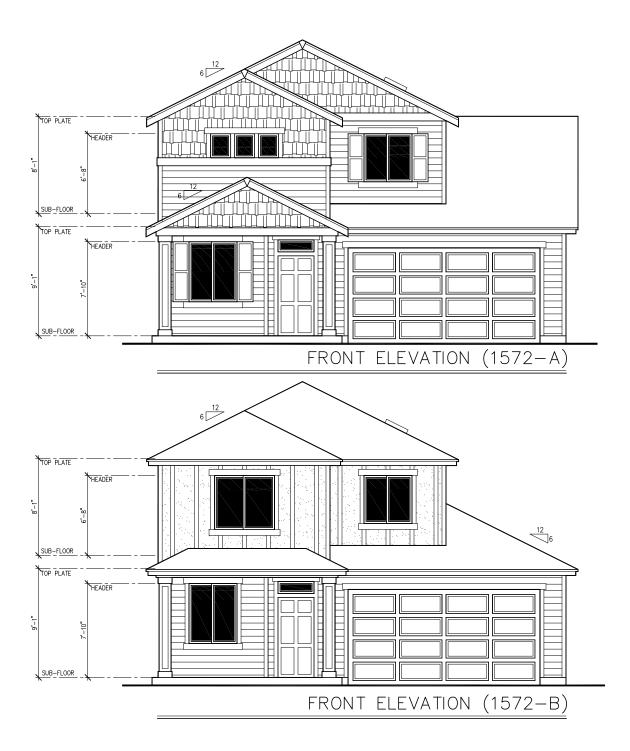
Client: Pebble Creek, LLC

Site:

<u>Pebble Creek – Base Plan</u> Bremerton, WA

Calculated by:

Eric L. Rice, PE ELR Engineering 1915 Dayton Ave NE Renton, WA 98056 Phone: (206) 200-8764 Email: elreng33@gmail.com


1915 Dayton Ave NE Renton, WA 98056 phone: (206) 200-8764 email: elreng33@gmail.com

Project:	Pebble (Pebble Creek, LLC/1572-AB							
Job No.			Figured by:	ELR					
Checked by:	Date:	3/6/2020	Sheet:	2					

Scope of Work:

ELR Engineering was asked to provide permit submittal structural calculations for the proposed Rueppell Home Design Plan 1572-AB for Pebble Creek, LLC. Our structural engineering information is shown in these calculations and on the project architect's submitted S-sheets. The information in this report conforms to the 2015 International Building Code as amended by the local jurisdiction. <u>These calculations are applicable and valid only for the site stated on the cover sheet of these calculations.</u> Questions should be addressed to the undersigned.

Eric L. Rice, PE ELR Engineering

GENERAL STRUCTURAL NOTES

(Unless noted otherwise on plans and details)

CODES AND SPECIFICATIONS

- 1. International Building Code (IBC) 2015 edition with local jurisdiction amendments as applicable 2. ASCE/SEI 7-10 - Minimum Design Loads for Buildings and Other Structures with Supplement
 - No. 1
- 3. ANSI AWC NDS-2015/AWC SPDWS 2015/AWC WFCM 2015 National Design Specification for Wood Construction with 2015 NDS Supplement/Special Design Provisions for Wind & Seismic/Wood Frame Construction Manual for One- and Two-Family Dwellings
- 4. ACI 318-14 Building Code Requirements for Structural Concrete
- 5. AISC 360-10/341-10 Specification for Structural Steel Buildings/Seismic Provisions for Structural Steel Buildings
- 6. AWS D1.4/D1.4M-2011/Structural Welding Code
- 7. TMS 402-2013/ACI 530-13/ASCE 5-13 Building Code Requirements for Masonry Structures
- <u>DESIGN CRITERIA</u>
- 1. Wind Risk category = II, Basic wind speed (V) = 110 mph, Wind directionality factor = 0.85, Exposure category = B, Topographic factor Kzt = 1.00, Gust effect factor = 0.85, Enclosure classification = Enclosed, Internal pressure coefficient $(GC_{pi}) = \pm 0.18$
- 2. Seismic Risk category = II, Seismic importance factor (le) = 1.00, Site Class = D, $S_s = 1.579$, $S_1 = 0.611$, $S_{DS} = 1.053$, $S_{D1} = 0.611$, Seismic Design Category = D, Basic seismic-force-resisting system = A.15 per ASCE 7-10 Table 12.2-1, Seismic response coefficient (C_s) = 0.162(orthogonal 1) & 0.162(orthogonal 2), Response modification factor (R) = 6.5(orthogonal 1) & 6.5(orthogonal 2), Design procedure used = Equivalent Lateral Force Procedure.
- 3. Roof Dead: 15 psf
 - Live: 20 psf
 - Snow: 25 psf (Ps)
 - Floor Dead: 12 psf
 - Live: 40 psf (uniform), 60 psf (uniform deck)
- 5. Soils Vertical bearing pressure (capacity): 1500 psf Lateral bearing pressure (capacity): 150 psf/ft of depth Coefficient of friction (capacity): 0.25 (multiplied by dead load) Active design lateral load: 40 psf/ft of depth At-rest design lateral load: 60 psf/ft of depth

STRUCTURAL OB SERVATION

1. Structural observation is required only when specifically designated as being required by the registered design professional or the building official.

SOIL CONSTRUCTION

4.

- Extend footings to undisturbed soil or fill compacted to 95% Modified Proctor (ASTM D1557). All construction on fill soils shall be reviewed by a registered geotechnical engineer. All footings shall be 18 inches minimum below adjacent finish grade. It is the contractor's responsibility to verify that the site soils provide the minimum vertical bearing pressure capacity stated above. <u>PIPE PILES</u>
- 1. Pipe shall conform to ASTM A53 Grade B. Unless noted otherwise, pipe is not required to be galvanized.
- 2. Pipe shall be driven to refusal and tested (as required) per Geotechnical Engineer's requirements.

REINFORCED CONCRETE

- 1. f'c = 3000 psi(*) at 28 days. Min $5-\frac{1}{2}$ sacks of cement per cubic yard of concrete and maximum of $6-\frac{3}{4}$ gallons of water per 94 lb. sack of cement. (*) Special inspection is not required 3000 psi compressive strength is specified for weathering protection only structural design is based on f'c = 2500 psi.
- 2. Maximum aggregate size is 7/8". Maximum slump = 4 inches.
- 3. All concrete shall be air entrained 5% minimum / 7% maximum (percent by volume of concrete).
- 4. Mixing and placement of all concrete shall be in accordance with the IBC and ACI 318. Proportions of aggregate to cement shall be such as to produce a dense, workable mix which can be placed without segregation or excess free surface water. Provide 3/4 inch chamfer on all exposed concrete edges unless otherwise indicated on architectural drawings.
- 5. No special inspection is required.

6. Vibrate all concrete walls. Segregation of materials shall be prevented. <u>REINFORCING_STEEL</u>

1. Concrete reinforcement shall be detailed, fabricated and placed in accordance with ACI 318.

- 2. Reinforcing steel shall be grade 40 minimum and deformed billet steel conforming to ASTM A615.
- 3. Welded wire mesh shall conform to ASTM A185.
- 4. Reinforcing steel shall be accurately placed and adequately secured in position. The following protection for reinforcement shall be provided:

Cast against and permanently exposed to earth -Exposed to earth or weather -

3" 1.5" for #5 bar and smaller 2" for #6 bar and larger 1.5"

<u>Min Cover</u>

Slabs and walls at interior face -

5. Lap continuous reinforcing bars 32 bar diameters (1'-6'') min) in concrete. Corner bars consisting of 32 bar diameter (1'-6'' min) bend shall be provided for all horizontal reinforcement. Lap welded wire mesh edges 1.5 mesh minimum. This criteria applies unless noted otherwise.

RETAINING WALLS

1. Concrete floor slabs to be poured and cured and floor framing above shall be complete before backfilling behind retaining walls.

TIMBER

- 1. Unless noted otherwise, all sawn lumber shall be kiln dried and graded/marked in conformance with WCLIB standard grading for west coast lumber. Lumber shall meet the following minimum criteria:
 - DF #2 (Fb=875 psi) 4x and larger:
 - 3x and smaller: HF #2 (Fb=850 psi) or SPF #2 (Fb=875 psi)
- 2. Wall studs shall be:
 - <u>Bearing walls with 10'-0" maximum stud length</u>

2x4 HF stud grade or btr at 24" (max) oc - carrying only roof and ceiling 2x4 HF stud grade or btr at 16" (max) oc - carrying only one floor, roof and ceiling 2x6 HF stud grade or btr at 24" (max) oc - carrying only one floor, roof and ceiling 2x6 HF stud grade or btr at 16" (max) oc - carrying only two floors, roof and ceiling

Non-Bearing walls with maximum stud length noted

2x4 HF stud grade or btr at 24" (max) oc - 10'-0" maximum stud length 2x6 HF stud grade or btr at 24" (max) oc - 15'-0" maximum stud length

- 3. Provide 4x6 DF2 header over openings not noted otherwise. Provide (1)2x trimmer and (1)2x king header support for clear spans 5'-0" or less. Provide (2)2x trimmer and (1)2x king header support for clear spans exceeding 5'-0".
- 4. Provide solid blocking in floor space under all posts and wall members connected to holdowns. Orient blocking such that wood grain in blocking is oriented vertically.
- 5. Provide double floor joists under all partition walls parallel to floor joists and along the perimeter of all diaphragm openings.
- 6. Provide double blocking between floor joists under all partition walls perpendicular to floor joists.

WOOD CONNECTORS, FASTENERS AND PRESSURE TREATED WOOD

- 1. All wood connectors shall be Simpson or approved equal.
- 2. All nails shall be common wire nails unless noted otherwise.
- 3. All nailing shall meet the minimum nailing requirements of Table 2304.10.1 of the International Building Code.
- 4. All wood in contact with ground or concrete to be pressure-treated with a wood preservative.
- 5. Wood used above ground shall be pressure treated in accordance with AWPA U1 for the following conditions:
 - a) Joists, girders, and subfloors that are closer than 18" to exposed ground in crawl spaces or unexcavated areas located within the perimeter of the building foundation.
 - b) Wood framing including sheathing that rest on exterior foundation walls and are less than 8 inches from exposed earth.
 - c) Sleepers, sills, ledgers, posts and columns in direct contact with concrete or masonry.
- 6. All field-cut ends, notches, and drilled holes of preservative-treated wood shall be treated, for use category UC4A per AWPA U1-07, in the field using a 9.08% Copper Naphthenate (CuN) solution such as "End cut Solution" (Cunapsol-1) in accordance with the directions of the product manufacturer.
- 7. All wood connectors and associated steel fasteners (except anchor bolts and holdown anchors, 1/2" diameter and larger) in contact with any preservative-treated wood shall conform to one of the following corrosion protection configuration options:
 - a) All wood connectors and associated steel fasteners shall be Type 303, 304, 306 or 316 stainless steel when actual wood preservative retention levels exceed the following levels: Treatment <u>Retention level (pcf)</u> ACQ (Alkaline Copper Quat)

MCQ (Micronized Copper Quat)

Greater than 0.40 Greater than 0.34

CA-B (Copper Azole)

Greater than 0.21 CA-C & MCA (Copper Azole & Azole Biocide) Greater than 0.15

 $\mu CA-C$ (Azole Biocide)

- Greater than 0.14
- b) When actual wood preservative retention levels do not exceed the levels in 7.a) above, all wood connectors and fasteners shall, at a minimum, be hot-dipped galvanized by one of the following methods:
 - i) Continuous hot-dipped galvanizing per ASTM A653, type G185.
 - ii) Batch or Post hot-dipped galvanizing per ASTM 123 for individual connectors and as per ASTM A153 for fasteners. Fasteners, other than nails, timber rivets, wood screws and lag screws, may be hot-dipped galvanized as per ASTM B695, Class 55 minimum.
- c) Plain carbon steel fasteners in SBX/DOT and zinc borate preservative treated wood in an interior, dry environment shall be permitted.
- 8. Do not mix stainless steel and hot-dipped galvanized wood connectors and fasteners.
- 9. All anchor bolts shall be as specified in the general notes on the shearwall schedule.
- 10. Where a connector strap connects two wood members, install one half of the total required nails or bolts in each member.
- 11. All bolts in wood members shall conform to ASTM A307.

12. Provide standard cut washers under the head of all bolts and lag screws bearing on wood. ANCHORAGE

1. All anchor bolts and holdown bolts embedded in concrete or masonry shall be A307 unless noted otherwise. Expansion bolts into concrete not otherwise specified shall be Simpson STRONG-BOLT 2 Wedge Anchor. Install in accordance with ICC ESR-1771, including minimum embedment depth requirements.

NAILS

1. Nailing of wood framed members to be in accordance with IBC table 2304.10.1 unless otherwise noted. Connection designs are based on nails with the following properties:

<u>PENNY WEIGHT</u>	<u> DIAMETER (INCHES)</u>	<u>length (inches)</u>
8d sinker	0.113	2-3/8
8d common	0.131	2-1/2
10d box	0.131	3
16d sinker	0.148	3-1/4
16d common	0.162	3-1/2

SHEARWALLS

- 1. All shearwall plywood nailing and anchors shall be as detailed on the drawings and noted in the shearwall schedule. All exterior walls shall be sheathed with 7/16" APA rated sheathing (24/16) - blocked - with minimum nailing 0.131" diameter x 2.5" nails @ 6" OC edges/12" oc field unless noted otherwise.
- 2. All headers shall have strap connectors to the top plate each end when the header interrupts the continuous (2)2x top plate. Use (1)Simpson MSTA24 connector each end unless noted otherwise.
- 3. All shearwall holdowns shall be as noted on the plans and shall be Simpson or approved equal.
- 4. All holdown anchors shall be installed as shown on plans and as per manufacturer's requirements. Holdown anchors may be wet-set or drilled and epoxied (Simpson "SET" epoxy or approved equal) with prior approval from the Engineer of Record. Provide the full embedment into concrete as stated on the plans.

FLOOR AND ROOF DIAPHRAGMS

- 1. Apply 23/32" APA rated Sturd-I-Floor(24" oc) nailed to floor framing members with 0.131" diameter x 2.5" nails at 6" OC at all supported edges and at 12" OC at interior supports unless noted otherwise on the plans. Offset panel joints between parallel adjacent runs of sheathing.
- 2. Apply $7/16^{\prime\prime}$ APA rated sheathing(24/16) nailed to roof framing members with 0.113" diameter x 2.5" nails at 6" OC at supported edges and at 12" OC at interior supports unless noted otherwise on the plans. Offset panel joints between parallel adjacent runs of sheathing.

3. Blocking of interior edges is not required unless noted otherwise on the plans.

BUILT-UP WOOD COLUMNS

- 1. All columns not specified or otherwise noted on the plans shall be (2)2x studs gang fastened per standard detail.
- 2. All columns not specified or otherwise noted on the plans supporting girder trusses or beams shall be (3)2x studs gang fastened per standard detail.

MANUFACTURED WOOD TRUSSES

- 1. Trusses shall be designed, fabricated, and installed in accordance with the "Design Specifications for Light Metal Plate Connected Wood Trusses" by the Truss Plate Institute.
- 2. All trusses shall be designed and stamped by a professional engineer licensed in the State of Washington.

- 3. Roof trusses shall be fabricated of Douglas Fir-Larch or Hem-Fir.
- 4. All mechanical connectors shall be IBC approved.
- 5. Submit design calculations, shop drawings and installation drawings stamped by a licensed engineer of all trusses to the owner's representative for review and Building Department approval.
- 6. Truss members and components shall not be cut, notched, drilled, spliced or otherwise altered in any way without written approval of the registered design professional.
- 7. Where trusses align with shearwalls, a special truss shall be provided that has been designed to transfer the load between the roof sheathing and the shearwall below. This truss shall be designed to transfer a minimum of 100 plf along the full length of the truss.
- 8. All temporary and permanent bracing required for the stability of the truss under gravity loads and in-plane wind or seismic loads shall be designed by the truss engineer. Any bracing loads transferred to the main building system shall be identified and submitted to the engineer of record for review.

PARALLEL STRAND LUMBER (PSL)

 Parallel strand lumber shall be manufactured as per NER-292 and meet the requirements of ASTM D2559 - Fb=2900 psi, E=2.2E6 psi for beams and Fb=2400 psi, E=1.8E6 psi for columns.

LAMINATED VENEER LUMBER (LVL)

- 1. Laminated veneer lumber shall be Doug Fir meeting the requirements of ASTM D2559 Fb=2600 psi, E=2.0E6 psi.
- 2. For top loaded multiple member beams only, fasten with two rows of 0.148" diameter x 3" nails at 12" OC. Use three rows of 0.148" diameter x 3" nails for beams with depths of 14" or more.

3. Provide full depth blocking for lateral support at bearing points.

LAMINATED STRAND LUMBER (LSL)

1. Laminated strand lumber shall be manufactured as per NER-292 and meet the requirements of ASTM D2559 - Fb=2325 psi, E=1.55E6 psi for beams and Fb=1700 psi, E=1.3E6 psi for beams/columns and Fb=1900 psi, E=1.3E6 psi for planks.

GLUED LAMINATED WOOD MEMBERS (GLB)

- 1. Glued laminated wood beams shall be Douglas Fir, kiln-dried, stress grade combination 24F-V4 (Fb=2400 psi, E=1.8E6 psi) unless otherwise noted on the plans.
- 2. Fabrication shall be in conformance with ANSI A190.1-12.
- 3. AITC stamp and certification required on each and every member.

WOOD I-JOISTS

- 1. Joists by Truss Joists/MacMillan or approved equal.
- 2. Joists to be erected in accordance with the plans and any Manufacturers drawings and installation drawings.
- 3. Construction loads in excess of the design loads are not permitted.
- 4. Provide erection bracing until sheathing material has been installed.

5. See manufacturer's references for limitations on the cutting of webs and/or flanges.

STEEL CONSTRUCTION

- 1. Structural steel shall be ASTM A992 (wide flange shapes) or A53-Grade B (pipe) or A36 (other shapes and plate) unless noted otherwise.
- 2. All fabrication and erection shall comply with AISC specifications and codes.
- 3. All welding shall be as shown on the drawings and in accordance with AWS and AISC standards. Welding shall be performed by WABO certified welders using E70XX electrodes. Only pre-qualified welds (as defined by AWS) shall be used.

MASONRY

- 1. Construction shall meet the requirements of IBC Chapter 21.
- 2. Special inspection is not required.
- 3. All concrete block masonry shall be laid up in running bond and shall have a minimum compressive strength of f'm = 1500 psi, using Type "S" mortar, f'c = 1800 psi.
- 4. All cells containing reinforcing bars shall be filled with concrete grout with an f'c = 2000 psi in maximum lifts of 4'-0''.
- 5. Bond beams with two #5 horizontally shall be provided at all floor and roof elevations and at the top of the wall.
- 6. Provide a lintel beam with two #5 horizontally over all openings and extend these two bars 2'-0'' past the opening at each side or as far as possible and hook.
- 7. Provide two #5 vertically for the full story height of the wall at wall ends, intersections, corners and at each side of all openings unless otherwise shown.
- 8. Dowels to masonry walls shall be embedded a minimum of 1'-6'' or hooked into the supporting structure and of the same size and spacing as the vertical wall reinforcing.
- 9. Provide corner bars to match the horizontal walls reinforcing at all wall intersections.
- 10. Reinforcing steel shall be specified under "REINFORCING STEEL". Lap all reinforcing

bars 40 bar diameters with a minimum of 1'-6''.

- 11. Masonry walls shall be reinforced as shown on the plans and details and if not shown, shall have (1) #5 @ 48" OC horizontally and (1) #5 @ 48" OC vertically.
- 12. Embed anchor bolts a minimum of 5".

GENERAL CONSTRUCTION

- 1. All materials, workmanship, design, and construction shall conform to the project drawings, specifications, and the International Building Code.
- 2. Structural drawings shall be used in conjunction with architectural drawings for bidding and construction. Contractor shall verify dimensions and conditions for compatibility and shall notify the architect of any discrepancies prior to construction.
 - Discrepancies: The contractor shall inform the engineer in writing, during the bidding period, of any and all discrepancies or omissions noted on the drawings and specifications or of any variations needed in order to conform to codes, rules and regulations. Upon receipt of such information, the engineer will send written instructions to all concerned. Any such discrepancy, omission, or variation not reported shall be the responsibility of the contractor.
- 3. The contractor shall provide temporary bracing as required until all permanent framing and connections have been completed.
- 4. The contractor shall coordinate with the building department for all permits and building department required inspections.
- 5. Do not scale drawings. Use only written dimensions.
- 6. Drawings indicate general and typical details of construction. Where conditions are not specifically indicated but are of similar character to details shown, similar details of construction shall be used, subject to review and approval by the architect and the structural engineer.
- 7. Contractor initiated changes shall be submitted in writing to the architect and structural engineer for approval prior to fabrication or construction.
- 8. All structural systems which are to be composed of field erected components shall be supervised by the supplier during manufacturing, delivery, handling, storage, and erection in accordance with instructions prepared by the supplier.
- 9. Contractor shall be responsible for all safety precautions and the methods, techniques, sequences, or procedures required to perform the work.
- 10. Shop drawing review: Dimensions and quantities are not reviewed by the engineer of record, therefore, must be reviewed by the contractor. Contractor shall review and stamp all shop drawings prior to submitting for review by the engineer of record. Submissions shall include a reproducible and one copy. Reproducible will be marked and returned. Re-submittals of previously submitted shop drawings shall have all changes clouded and dated with a sequential revision number. Contractor shall review and stamp all revised and resubmitted shop drawings prior to submittal and review by the engineer of record. In the event of conflict between the shop drawings and design drawings/specifications, the design drawings/specifications shall control and be followed.

[(1),(7),(13)]
Schedule
<u>Shearwall</u>

Mark per plan	Sheathing	No. sides sheathed	Fastener size	Edge fastener spacing	Field fastener spacing	Framing member at adjoining	Bottom plate when directly	Bottom plate nail	Bottom plate nail spacing	Bottom plate when directly on concrete	Anchor bolt dia.	Anchor bolt spacing, (2x sill)	Top plate connector (9).(15)	Top plate connector spacing	ASD Vseismic	ASD Vwind (+40%)
				(14)		panels (2)	on wood (10)	size	in each row	(4),(5),(10)	(8)	(3x sill)		(11),(15)		(12)
W6A	7/16" PLY/OSB	1	0.131 <i>"</i> dia. x 2.5"	.9	12″	2x stud & unblocked horz. joints	2x	0.131 <i>"</i> dia. x 3"	1-row 12"	2x or 3x	5/8"	72"(2x) 72"(3x)	A35 or LTP4	50″	145 plf	203 plf
W6B	7/16" PLY/OSB	1	0.131 <i>"</i> dia. x 2.5"	6"	6″	2x stud & unblocked horz. joints	2x	0.131" dia. x 3"	1-row 9"	2x or 3x	5/8″	72"(2x) 72"(3x)	A35 or LTP4	36″	193 plf	271 plf
W 6	7/16" PLY/OSB	1	0.131 <i>"</i> dia. x 2.5"	.9	12" (3)	2x	2x	0.131" dia. x 3"	1-row 7"	2x or 3x	5/8"	68"(2x) 72"(3x)	A35 or LTP4	30″	242 plf	339 plf
W4	7/16" PLY/OSB	1	0.131 <i>"</i> dia. x 2.5"	4″	12″ (3)	2x	2x	0.131" dia. x 3"	2-row 10" (6)	2x or 3x	5/8″	47"(2x) 58"(3x)	A35 or LTP4	20″	353 plf	495 plf
§ Perm	7/16" PLY/OSB	H	0.131 <i>"</i> dia. x 2.5″	3"	12″ (3)	3x (5, 17)	2x	0.131 <i>"</i> dia. x 3"	2-row 8" (6)	2x or 3x	5/8″	36"(2x) 45"(3x)	A35 or LTP4	16″	456 plf	638 plf
∑ t Numi	7/16" PLY/OSB	1	0.131 <i>"</i> dia. x 2.5"	2″	12"(3)	^{3x} (5, 17)	2x	0.131 <i>"</i> dia. x 3″	2-rows 6" (6)	2x or 3x	5/8″	28"(2x) 34"(3x)	A35 or LTP4	12″	595 plf	833 plf
5W3	7/16" PLY/OSB	2	0.131 <i>"</i> dia. x 2.5"	3"	12″ (3)	3x (5, 16, 17)	2x	0.131 <i>"</i> dia. x 3″	3-rows 6" (6)	2x or 3x	5/8″	18"(2x) 22"(3x)	A35 or LTP4	8″	911 plf	1276 plf
2W2	19/32" PLY/OSB	2	0.131 <i>"</i> dia. x 2.5"	2"	12″	3x (5, 16, 17)	2x	0.131 <i>"</i> dia. x 3"	3-rows 4" (6)	2x or 3x	5/8″	12"(2x) 15"(3x)	A35 or LTP4	5″	1363 plf	1908 plf
Gene	General Notes: (unless noted otherwise) (1) Wall stud framing is assumed to be as per the g	(unless no aming is assun	Notes: (unless noted otherwise) Wall stud framing is assumed to be as per the general structural notes.	wise) sr the general	structural not	es.							EI	ELR Engineering 1915 Dayton Ave NE	e NE	

3 S E

All panel edges are to be supported by framing members - studs, plates and blocking (unless noted otherwise in the table above).

Allowable shears in the table above assume either 1) wall studs at 16" oc with panel long-axis oriented vertically or horizontally and field fastener spacing as per the table above or 2) wall studs at 24" oc with panel long-axis oriented horizontally and 6" oc field fastener spacing.

elreng33@gmail.com

206.200.8764

phone: email:

Renton, WA 98056

Where the full thickness of (2)2x or 3x mudsills are directly connected to wall studs, use (2)0.148" dia.x4" end nails (20d box) per stud.

(2)2x material can be used in lieu of 3x material provided the (2)2x is gang nailed as per the associated shearwall bottom plate nailing

Unless noted otherwise, provide (1)2x treated mudsill with 5/8" diameter anchor bolts at 72" oc and located within 4" to 12" from the cut ends of the sill plate. Provide a minimum of two anchor bolts per mudsill section. Where bottom plate attachment specifies 2 or more rows of nails into the wood floor below, provide rim joist(s), joist(s) or blocking that has a minimum total width of 2.5 inches.

Provide .229"x3"x3" plate washers at all anchor bolts in 2x4/3x4 mudsills and .229"x3"x4-1/2" plate washers at all anchor bolts in 2x6/3x6 mudsills. The distance from the inside face of any structural sheathing to the nearest edge of the nearest plate washer shall not exceed 1/2". Embed anchor bolts 7 inches min. into concrete. Min. anchor bolt concrete end dist. (perp. to mudsill) is 1-3/4". Min. anchor bolt concrete end dist. (parallel to mudsill) is 8". 6.00.6

Use 0.131"dia. x 1-1/2" long nails if connector is in contact with framing. Use 0.131"dia. x 2-1/2" long nails if connector is installed over sheathing.

Adjoining horz. panel joints are not permitted to be located on either side of the top plate or the bottom plate. Locate adjoining horz. panel joints on the rim joist above and/or below or at blocking in wall above and/or below. Spacing shown assumes top plate connectors are installed on one side of wall. If installed on both sides of wall, required spacing can be multiplied by two (2).

Table above shows ASD allowable unit shear capacity. LRFD factored unit shear resistance is calculated by multiplying ASD values above by 1.6.

Shearwalls designated as FTAO (force transfer around openings) or perforated require sheathing and shear nailing above and below all openings for the full extent of the shearwall.

Shearwall edge nailing is required along full height of all holdown members. At built-up holdown members, distribute edge nailing into all laminations. $\begin{array}{c} (11) \\ (11) \\ (11) \\ (12) \\ (1$

LTP4's and/or A35's are not required at the top of the shear wall when/where the shear wall is sheathed on one side only and when/where the location of adjoining horz. panel joints meets note (10) requirements. Vertical and horizontal panel joints (where occur) on opposite sides of the wall shall not occur on the same framing member (stud, plate, or blocking) unless that framing member is a 3x member (min.) with panel edge nailing

staggered or that framing member is a (2)2x (min.) as per footnote (5) above. Vertical and horizontal panel joints (where occur) shall be located on a 3x framing member (min.) with panel edge nailing staggered or a (2)2x (min.) framing member as per footnote (5) above. (17)

ELR Engineering 1915 Dayton Ave NE Renton, WA 98056 phone: (206) 200-8764 email: elreng33@gmail.com

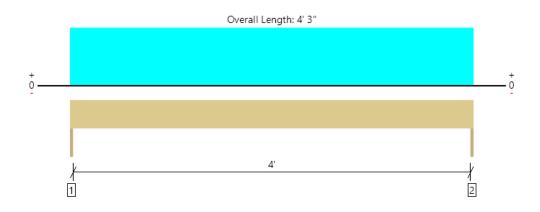
Vertical Calculations

JOB SUMMARY REPORT

1572-AB

Roof			
Member Name	Results	Current Solution	Comments
1	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2	
2	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2	
3-B	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2	
Floor-2			
Member Name	Results	Current Solution	Comments
1	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
2	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
3	Passed	1 piece(s) 11 7/8" TJI® 110 @ 16" OC	
4	Passed	1 piece(s) 3 1/2" x 11 7/8" 2.2E Parallam® PSL	
5	Passed	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam	
6	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2	
7	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2	
8	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2	
9-A	Passed	1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam	
9-B	Passed	1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam	
10	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2	
11-A	Passed	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL	
11-B	Passed	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL	
12	Passed	1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam	
Floor-1			
Member Name	Results	Current Solution	Comments
1	Passed	1 piece(s) 2 x 10 Hem-Fir No. 2 @ 16" OC	
2	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2	

ForteWEB Software Operator
Eric L Rice
ELR Engineering (206) 200-8764 elreng33@gmail.com
(206) 200-8764
elreng33@gmail.com


Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3 File Name: 1572-AB

Roof, 1 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1119 @ 0	3281 (1.50")	Passed (34%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	735 @ 8 3/4"	3502	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	1189 @ 2' 1 1/2"	3438	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.013 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.022 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 3" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	В	earing Leng	th	Loads t	o Supports	(lbs)	
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	428	691	1119	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	428	691	1119	None

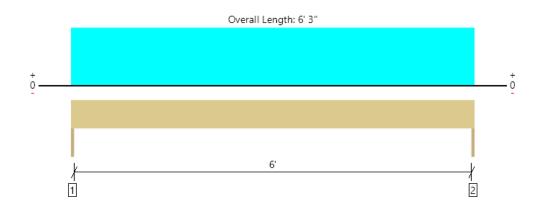
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 4' 3"	13'	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator
Eric L Rice
ELR Engineering
(206) 200-8764
elreng33@gmail.com


Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 2 / 21

Roof, 2 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	708 @ 0	3281 (1.50")	Passed (22%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	542 @ 8 3/4"	3502	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1106 @ 3' 1 1/2"	3438	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.027 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.044 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 6' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 3" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	В	earing Leng	th	Loads t	o Supports	(lbs)	
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	278	430	708	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	278	430	708	None

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 6' 3"	5' 6"	15.0	25.0	Default Load

Weyerhaeuser Notes

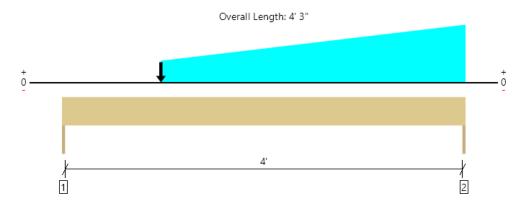
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

orteweb Software Operator	
ric L Rice	
LR Engineering	
206) 200-8764	
Ireng33@gmail.com	

Ε

Ε


Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 3 / 21

Roof, 3-B 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1569 @ 0	3281 (1.50")	Passed (48%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1564 @ 8 3/4"	3502	Passed (45%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1630 @ 1' 1/2"	3438	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.015 @ 1' 11 3/16"	0.142	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.024 @ 1' 11 1/4"	0.213	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 3" o/c based on loads applied, unless detailed otherwise.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	597	972	1569	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	254	400	654	None

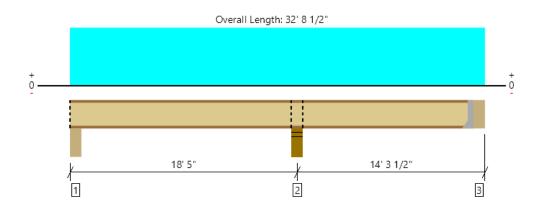
			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	6.4		
1 - Tapered (PSF)	1' 1/2" to 4' 3"	1' to 2' 8"	15.0	25.0	Default Load
2 - Point (Ib)	1' 1/2"	N/A	735	1225	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator
Eric L Rice ELR Engineering (206) 200-8764 elreng33@gmail.com


Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 4 / 21

Floor-2, 1 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1401 @ 18' 5"	2350 (5.25")	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	705 @ 18' 2 1/4"	1716	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-2316 @ 18' 5"	3160	Passed (73%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.290 @ 8' 9 3/4"	0.451	Passed (L/746)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.360 @ 8' 8 3/4"	0.902	Passed (L/601)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	41	Any	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 8" o/c based on loads applied, unless detailed otherwise.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of decking_2332Panels that is gluedAndNailedDown.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Beam - GLB	5.50"	5.50"	1.75"	121	433/-31	554/-31	Blocking
2 - Stud wall - HF	5.50"	5.50"	3.50"	323	1078	1401	Blocking
3 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.75" / 1.75" ²	79	353/-64	432/-64	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

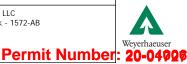
• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
3 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10d	2-Strong-Grip				

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 32' 8 1/2"	16"	12.0	40.0	Default Load

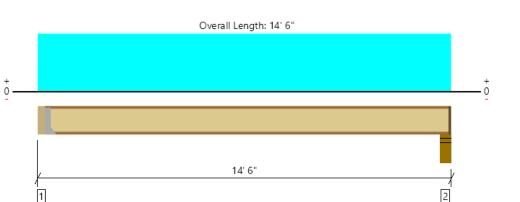
Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Job Notes

ForteWEB Software Operator Eric L Rice ELR Engineering (206) 200-8764 elreng33@gmail.com


Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 5 / 21

Floor-2, 2 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	480 @ 3 1/2"	910 (1.75")	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	480 @ 3 1/2"	1560	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1658 @ 7' 2 1/2"	3160	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.154 @ 7' 2 1/2"	0.346	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.200 @ 7' 2 1/2"	0.692	Passed (L/830)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	51	Any	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 5" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 1" o/c based on loads applied, unless detailed otherwise.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of decking_2332Panels that is gluedAndNailedDown.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 11 7/8" DF beam	3.50"	Hanger ¹	1.75" / 1.75" ²	115	384	499	See note 1
2 - Stud wall - HF	5.50"	4.25"	1.75"	117	389	506	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie								
Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
IUS1.81/11.88	2.00"	N/A	10-10d	2-Strong-Grip				
	Model	Model Seat Length	Model Seat Length Top Fasteners	Model Seat Length Top Fasteners Face Fasteners	Model Seat Length Top Fasteners Face Fasteners Member Fasteners			

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 14' 6"	16"	12.0	40.0	Default Load

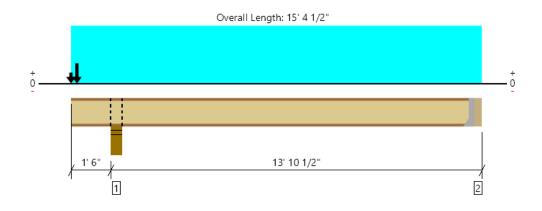
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Job Notes

Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB



3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 6 / 21

Floor-2, 3 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	437 @ 15' 1"	910 (1.75")	Passed (48%)	1.00	1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	437 @ 15' 1"	1560	Passed (28%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-Ibs)	1377 @ 8' 9 3/8"	3160	Passed (44%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.135 @ 8' 4 7/8"	0.334	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.156 @ 8' 6 9/16"	0.668	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	52	Any	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 10" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 1" o/c based on loads applied, unless detailed otherwise.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of decking_2332Panels that is gluedAndNailedDown.

• Additional considerations for the TJ-Pro[™] Rating include: 5/8" Gypsum ceiling.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	3.50"	373	454	231	1058	Blocking
2 - Hanger on 11 7/8" PSL beam	3.50"	Hanger ¹	1.75" / 1.75" ²	85	372	-24		See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10d	2-Strong-Grip				

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 15' 4 1/2"	16"	12.0	40.0	-	Default Load
2 - Point (PLF)	2 3/4"	16"	81.0	-	-	
3 - Point (PLF)	2 3/4"	16"	60.0	-	125.0	
4 - Point (PLF)	0	16"	18.0	-	30.0	

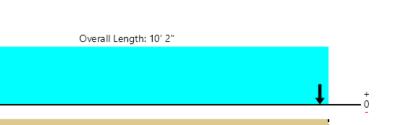
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

> 7everhaeuser 20-04000

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	Job Notes
Eric L Rice ELR Engineering (206) 200-8764 elreng33@gmail.com	Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB Permit Number:
	Fermit Number.


3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 7 / 21

0

MEMBER REPORT

Floor-2, 4 1 piece(s) 3 1/2" x 11 7/8" 2.2E Parallam® PSL

/_____10' 2" 1 1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	6665 @ 9' 10"	7796 (5.50")	Passed (85%)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	1873 @ 1' 5 3/8"	8035	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	5813 @ 5' 1"	19902	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.064 @ 5' 1"	0.237	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Total Load Defl. (in)	0.114 @ 5' 1"	0.475	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 2" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 2" o/c based on loads applied, unless detailed otherwise.

	Bearing Length			L	oads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - HF	5.50"	5.50"	2.05"	1274	1346/-244	826	3446/- 244	Blocking
2 - Stud wall - HF	5.50"	5.50"	4.70"	3090	1346/-244	3421	7857/- 244	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 2"	N/A	13.0			
1 - Uniform (PSF)	0 to 10' 2" (Top)	5' 6"	15.0	-	25.0	Default Load
2 - Uniform (PSF)	0 to 10' 2" (Top)	8' 1"	10.0	-		Default Load
3 - Uniform (PLF)	0 to 10' 2" (Front)	N/A	59.3	264.8/-48.0	-	Linked from: 1, Support 3
4 - Uniform (PSF)	0 to 10' 2" (Top)	1'	15.0	-	25.0	Default Load
5 - Point (lb)	9' 11 3/8" (Front)	N/A	1816	-	2595	Linked from: 11, Support 3

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	
Eric L Rice	
ELR Engineering	
(206) 200-8764	
elreng33@gmail.com	

Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 8 / 21

Floor-2, 5 1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2372 @ 0	3413 (1.50")	Passed (70%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1836 @ 9"	4638	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	4628 @ 4' 1 1/2"	6563	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.150 @ 4' 1 1/2"	0.275	Passed (L/659)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.271 @ 4' 1 1/2"	0.412	Passed (L/366)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 3" o/c based on loads applied, unless detailed otherwise.

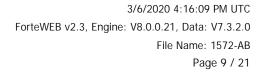
• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

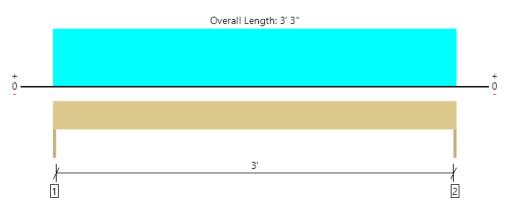
· Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1056	1188	567	2811	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1056	1188	567	2811	None


			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	6.4			
1 - Uniform (PLF)	0 to 8' 3"	N/A	86.3	288.0	-	Linked from: 2, Support 1
2 - Uniform (PSF)	0 to 8' 3"	8' 1"	10.0	-	-	
3 - Uniform (PSF)	0 to 8' 3"	5' 6"	15.0	-	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	Job Notes]
Eric L Rice ELR Engineering (206) 200-8764	Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB	
elreng33@gmail.com	Denneit Number	Weyerhaeuser
	Permit Number	: 20-04000

Floor-2, 6 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	835 @ 0	3281 (1.50")	Passed (25%)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	436 @ 8 3/4"	3045	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-lbs)	642 @ 1' 7 1/2"	2989	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.004 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Total Load Defl. (in)	0.007 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 3' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 3' 3" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

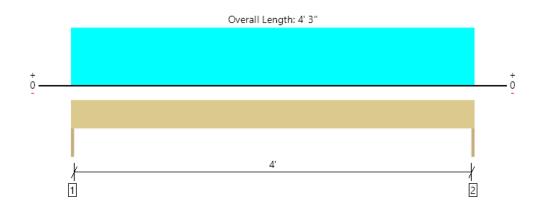
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	360	430/-78	203	993/-78	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	360	430/-78	203	993/-78	None

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	6.4			
1 - Uniform (PSF)	0 to 3' 3"	5'	15.0	-	25.0	Default Load
2 - Uniform (PSF)	0 to 3' 3"	8' 1"	10.0	-	-	Default Load
3 - Uniform (PLF)	0 to 3' 3"	N/A	59.3	264.8/-48.0	-	Linked from: 1, Support 3

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD


ForteWEB Software Operator	Job Notes
	Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB
circlig55egmail.com	Dorm

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 10 / 21

Floor-2, 7 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1427 @ 0	3281 (1.50")	Passed (43%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	875 @ 8 3/4"	3045	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1415 @ 2' 1 1/2"	2989	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.016 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.028 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 3" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

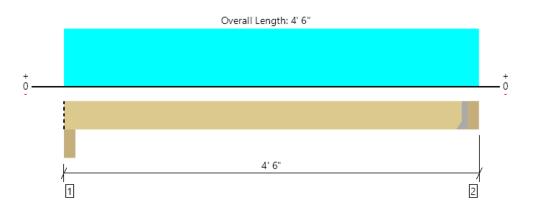
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	608	724	368	1700	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	608	724	368	1700	None

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	6.4			
1 - Uniform (PLF)	0 to 4' 3"	N/A	279.8	340.5		Linked from: 3, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD


orteWEB Software Operator
iric L Rice ELR Engineering 206) 200-8764 Ireng33@gmail.com

Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

Floor-2, 8 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	636 @ 4' 1/2"	3281 (1.50")	Passed (19%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	429 @ 3' 5 1/4"	3502	Passed (12%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	590 @ 2' 2 1/4"	3438	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.005 @ 2' 2 1/4"	0.124	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.008 @ 2' 2 1/4"	0.185	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 1" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 1" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Column - HF	5.50"	5.50"	1.50"	290	460	750	Blocking
2 - Hanger on 7 1/4" HF beam	5.50"	Hanger ¹	1.50"	304	487	791	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

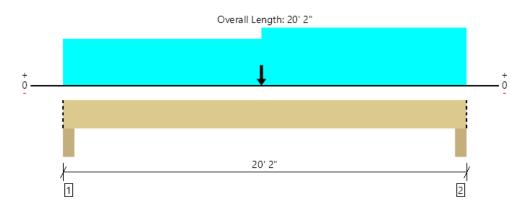
Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	HUC48	2.50"	N/A	10-10d	4-10d			

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 1/2"	N/A	6.4		
1 - Uniform (PSF)	0 to 4' 6" (Top)	8' 5"	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD


ForteWEB Software Operator	Job Notes
	Client: Pebble Creek, LLC Project: Pebble Creek - 1!

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 12 / 21

Floor-2, 9-A 1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	8092 @ 4"	19663 (5.50")	Passed (41%)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	7026 @ 1' 10"	18437	Passed (38%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Pos Moment (Ft-Ibs)	50127 @ 9' 11"	55620	Passed (90%)	1.15	1.0 D + 1.0 S (All Spans) [1]
Live Load Defl. (in)	0.441 @ 10' 1 1/2"	0.650	Passed (L/530)		1.0 D + 1.0 S (All Spans) [1]
Total Load Defl. (in)	0.813 @ 10' 15/16"	0.975	Passed (L/288)		1.0 D + 1.0 S (All Spans) [1]

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 20' 2" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 20' 2" o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 0.97 that was calculated using length L = 19' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

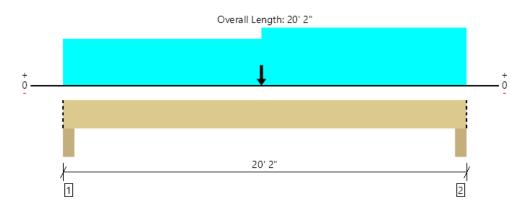
	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Column - DF	5.50"	5.50"	2.26"	3474	2456/-176	3701	9631/- 176	Blocking
2 - Column - DF	5.50"	5.50"	2.06"	3244	765/-55	4124	8133/- 55	Blocking

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 20' 2"	N/A	22.1			
1 - Uniform (PLF)	0 to 9' 11" (Top)	N/A	90.8	324.8/-23.3	-	Linked from: 1, Support 1
2 - Uniform (PSF)	0 to 9' 11" (Top)	8' 1"	-	-	-	
3 - Uniform (PSF)	0 to 9' 11" (Top)	6' 8"	15.0	-	25.0	
4 - Uniform (PSF)	9' 11" to 20' 2" (Top)	10' 4 1/2"	15.0	-	25.0	
5 - Point (Ib)	9' 11" (Top)	N/A	2786	-	3514	Linked from: 11, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD


ForteWEB Software Operator Eric L Rice ELR Engineering (206) 200-8764 elreng33@gmail.com Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 13 / 21

Floor-2, 9-B 1 piece(s) 5 1/2" x 16 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	8014 @ 4"	19663 (5.50")	Passed (41%)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	6948 @ 1' 10"	18437	Passed (38%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Pos Moment (Ft-Ibs)	49240 @ 9' 11"	55620	Passed (89%)	1.15	1.0 D + 1.0 S (All Spans) [1]
Live Load Defl. (in)	0.433 @ 10' 1 1/2"	0.650	Passed (L/541)		1.0 D + 1.0 S (All Spans) [1]
Total Load Defl. (in)	0.800 @ 10' 15/16"	0.975	Passed (L/293)		1.0 D + 1.0 S (All Spans) [1]

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 20' 2" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 20' 2" o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 0.97 that was calculated using length L = 19' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

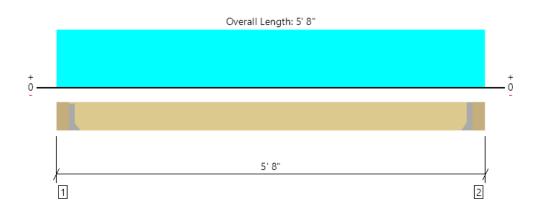
	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Column - DF	5.50"	5.50"	2.24"	3440	2456/-176	3643	9539/- 176	Blocking
2 - Column - DF	5.50"	5.50"	2.04"	3211	765/-55	4067	8043/- 55	Blocking

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 20' 2"	N/A	22.1			
1 - Uniform (PLF)	0 to 9' 11" (Top)	N/A	90.8	324.8/-23.3	-	Linked from: 1, Support 1
2 - Uniform (PSF)	0 to 9' 11" (Top)	8' 1"	-	-	-	
3 - Uniform (PSF)	0 to 9' 11" (Top)	6' 8"	15.0	-	25.0	
4 - Uniform (PSF)	9' 11" to 20' 2" (Top)	10' 4 1/2"	15.0	-	25.0	
5 - Point (lb)	9' 11" (Top)	N/A	1984	-	2174	Linked from: 11-B, Support 1
6 - Point (Ib)	9' 11" (Top)	N/A	735	-	1225	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD


ForteWEB Software Operator Eric L Rice ELR Engineering (206) 200-8764 elreng33@gmail.com Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 14 / 21

Floor-2, 10 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

						-
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	5
Member Reaction (lbs)	1567 @ 6"	3281 (1.50")	Passed (48%)		1.0 D + 0.75 L + 0.75 S (All Spans)	N F
Shear (lbs)	1084 @ 1' 1 1/4"	3045	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)] [
Moment (Ft-Ibs)	1706 @ 2' 10"	2989	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)] [
Live Load Defl. (in)	0.023 @ 2' 10"	0.156	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)]
Total Load Defl. (in)	0.040 @ 2' 10"	0.233	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)]

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 8" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 4' 8" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Hanger on 7 1/4" HF beam	6.00"	Hanger ¹	1.50"	808	965	491	2264	See note 1
2 - Hanger on 7 1/4" HF beam	6.00"	Hanger ¹	1.50"	808	965	491	2264	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	HUC48	2.50"	N/A	14-10d	6-10d				
2 - Face Mount Hanger	HUC48	2.50"	N/A	14-10d	6-10d				

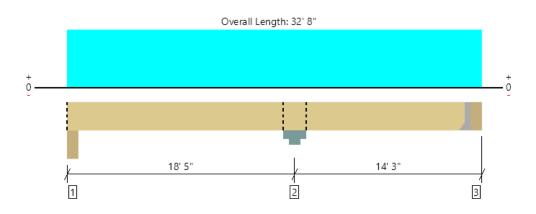
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	6" to 5' 2"	N/A	6.4			
1 - Uniform (PLF)	0 to 5' 8" (Top)	N/A	279.8	340.5	173.3	Linked from: 3, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	Job Notes
	Client: Pebb Project: Peb
(206) 200-8764	
elreng33@gmail.com	


ent: Pebble Creek, LLC bject: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 15 / 21

Floor-2, 11-A 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4044 @ 32' 2 1/2"	4922 (1.50")	Passed (82%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	7748 @ 16' 11 5/8"	13861	Passed (56%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-27462 @ 18' 5"	34332	Passed (80%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.427 @ 8' 7 3/16"	0.603	Passed (L/508)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.738 @ 8' 6 1/16"	0.904	Passed (L/294)		1.0 D + 1.0 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 32' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 32' 3" o/c based on loads applied, unless detailed otherwise.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beam - GLB	5.50"	5.50"	1.92"	2786	3514	6300	Blocking
2 - Column Cap - steel	11.00"	11.00"	5.05"	7486	9097	16583	Blocking
3 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.50"	1816	2595	4411	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
3 - Face Mount Hanger	HUCQ612-SDS	3.00"	N/A	14-SDS25212	6-SDS25212				

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 32' 2 1/2"	N/A	19.5		
1 - Uniform (PSF)	0 to 32' 8" (Top)	13'	15.0	25.0	
2 - Uniform (PSF)	0 to 32' 8" (Top)	8' 1"	10.0	-	
3 - Uniform (PSF)	0 to 32' 8" (Top)	5'	15.0	25.0	

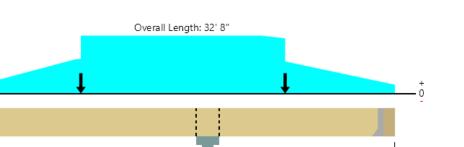
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

Job Notes

ForteWEB Software Operator Eric L Rice ELR Engineering (206) 200-8764 elreng33@gmail.com


Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 16 / 21

Floor-2, 11-B 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

2

14' 3"

3

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

1

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	16936 @ 18' 5"	36094 (11.00")	Passed (47%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	7934 @ 16' 11 5/8"	13861	Passed (57%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	-27630 @ 18' 5"	34332	Passed (80%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.432 @ 8' 9 13/16"	0.603	Passed (L/503)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.746 @ 8' 8 1/2"	0.904	Passed (L/291)		1.0 D + 1.0 S (Alt Spans)

18' 5"

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 32' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 32' 3" o/c based on loads applied, unless detailed otherwise.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Beam - GLB	5.50"	5.50"	1.50"	1984	2174	4158	Blocking
2 - Column Cap - steel	11.00"	11.00"	5.16"	7619	9318	16937	Blocking
3 - Hanger on 11 7/8" PSL beam	5.50"	Hanger ¹	1.50"	936	1137/-1	2073/-1	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

0

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
3 - Face Mount Hanger	HUC610	2.50"	N/A	14-16d	6-16d				

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 32' 2 1/2"	N/A	19.5		
1 - Uniform (PSF)	8' 2" to 24' 6" (Top)	13'	15.0	25.0	
2 - Uniform (PSF)	0 to 32' 8" (Top)	8' 1"	10.0	-	
3 - Uniform (PSF)	7' 8" to 22' 8" (Top)	5'	15.0	25.0	
4 - Tapered (PSF)	0 to 8' 2" (Top)	1' to 5'	15.0	25.0	
5 - Tapered (PSF)	24' 6" to 32' 8" (Top)	5' to 1'	15.0	25.0	
6 - Tapered (PSF)	0 to 7' 8" (Top)	0 to 5'	15.0	25.0	
7 - Tapered (PSF)	22' 8" to 32' 8" (Top)	5' to 0	15.0	25.0	
8 - Point (Ib)	8' 2" (Top)	N/A	780	1300	
9 - Point (lb)	24' 6" (Top)	N/A	780	1300	

ForteWEB Software Operator Eric L Rice ELR Engineering (206) 200-8764 elreng33@gmail.com Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 17 / 21

Wood Column

Lic. # : KW-06010691

DESCRIPTION: +)> Post for Floor-2-11B

Code References

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

General Inform	ation						
Analysis Method End Fixities Overall Column H	Top & Bo	e Stress Des ottom Pinned	0	Wood Section Name Wood Grading/Manuf. Wood Member Type	6x6 Graded Sawn	Lumber	
(Used for Wood Species Wood Grade	non-slender cald Douglas Fir No.2	,		Exact Width Exact Depth	5.50 in	Allow Stress Modification Factors Cf or Cv for Bending	1.0
Fb + Fb - Fc - Prll Fc - Perp	750 psi 750 psi 700 psi 625 psi	Ft Density	170 psi 475 psi 31.21 pcf	Area Ix Iy	30.250 in ² 76.255 in ⁴ 76.255 in ⁴	Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor	1.0 1.0 1.0 1.0
E : Modulus of El	I	x-x Bending 1300 470	y-y Bending 1300 470	Axial 1300 ksi Brace condition for de X-X (width) axis : Y-Y (depth) axis	Unbraced L	Cfu : Flat Use Factor Kf : Built-up columns Use Cr : Repetitive ? g) along columns : ength for buckling ABOUT Y-Y Axis = ength for buckling ABOUT X-X Axis =	

Applied Loads

Column self weight included : 59.006 lbs * Dead Load Factor
AXIAL LOADS
Floor-2-11B: Axial Load at 9.0 ft, D = 7.619, S = 9.318 k

DESIGN SUMMARY

Bending & Shear Check Results

PASS Max. Axial+Bending Stress Ratio =	0.9174 : 1	Maximum SERVIC	E Lateral Load	Reactions				
Load Combination	+D+S	Top along Y-Y	0.0 k	Bottom along Y-Y	0.0 k			
Governing NDS Forumla	Comp Only, fc/Fc'	Top along X-X	0.0 k	Bottom along X-X	0.0 k			
Location of max.above base	0.0 ft	Maximum SERVICE Lo	oad Lateral Deflect	ions				
At maximum location values are		Along Y-Y	0.0 in at	0.0 ft above base	9			
Applied Axial	16.996 k	for load com	bination : n/a					
Applied Mx	0.0 k-ft	Along X-X	0.0 in at	0.0 ft above base	2			
Applied My Fc : Allowable	0.0 k-ft 612.43 psi	for load combination : n/a						
	0.2.10	Other Factors used to	calculate allowabl	e stresses				
PASS Maximum Shear Stress Ratio = Load Combination	0.0 : 1 +0.60D			Bending Compression	Tension			
Location of max.above base	9.0 ft							
Applied Design Shear	0.0 psi							
Allowable Shear	272.0 psi							

Load Combination Results

			Maximum Axial	+ Bending	Stress Ratios	Maximu	m Shear Ra	atios
Load Combination	CD	СР	Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.823	0.4894	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+S	1.150	0.761	0.9174	PASS	0.0 ft	0.0	PASS	9.0 ft
+D+0.750S	1.150	0.761	0.7917	PASS	0.0 ft	0.0	PASS	9.0 ft
+0.60D	1.600	0.651	0.2088	PASS	0.0 ft	0.0	PASS	9.0 ft

Project Title: Engineer: ELR Project ID: Project Descr:

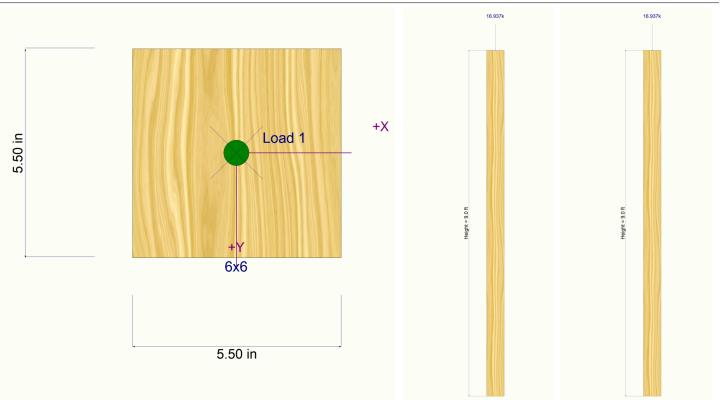
Printed: 6 MAR 2020, 8:36AM

File = C:\Dropbox\1_ELRE~1\1_ELRE~1\2020\1-RHD\MTT\PEBBLE~1\1572-ab\Enercalc\1572.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.21 .

Service loads entered. Load Factors will be applied for calculations.

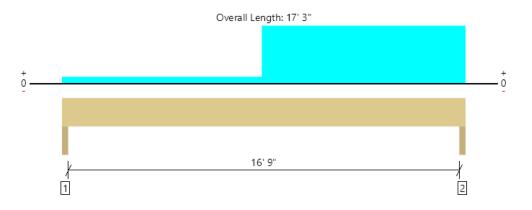
ELR Engineering

ELR Engineering 1915 Dayton Ave NE Renton, WA 98056 phone: 206.200.8764 email: elreng33@gmail.com Project Title: Engineer: ELR Project ID: Project Descr:


Printed: 6 MAR 2020, 8:36AM

Wood Column

File = C:\Dropbox\1_ELRE~1\1_ELRE~1\2020\1-RHD\MTT\PEBBLE~1\1572.ab\Enercalc\1572.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.21 . ELR Engineering


Lic. # : KW-06010691 DESCRIPTION: +)> Post for Floor-2-11B

Sketches

Floor-2, 12 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5177 @ 17' 1 1/2"	10725 (3.00")	Passed (48%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4135 @ 15' 10 1/2"	15085	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	17036 @ 10' 5 1/16"	38424	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.243 @ 9' 1 3/4"	0.567	Passed (L/838)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.406 @ 9' 1 1/2"	0.850	Passed (L/502)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 17' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 17' 3" o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 17'.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	3.00"	3.00"	1.50"	967	1352	2319	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	2039	3138	5177	None

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 3"	N/A	18.0		
1 - Uniform (PSF)	8' 6 1/2" to 17' 3"	18' 6"	15.0	25.0	Default Load
2 - Uniform (PSF)	0 to 8' 6 1/2"	2' 2"	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

orteWEB Software Operator	
ric L Rice	
LR Engineering	
206) 200-8764	
elreng33@gmail.com	

Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

Job Notes

3/6/2020 4:16:09 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.2.0 File Name: 1572-AB Page 19 / 21

JOB SUMMARY REPORT

1572-AB

Floor-1								
Member Name	Results	Current Solution	Comments					
1	Passed	1 piece(s) 2 x 10 Hem-Fir No. 2 @ 16" OC						
2	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2						
3-option	Passed	1 piece(s) 2 x 8 Hem-Fir No. 2 @ 16" OC						
4-option	Passed	1 piece(s) 4 x 10 Hem-Fir No. 2						

ForteWEB Software Operator
Eric L Rice
ELR Engineering
(206) 200-8764
ELR Engineering (206) 200-8764 elreng33@gmail.com

Job Notes Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB

4/16/2020 6:44:17 PM UTC ForteWEB v2.4 File Name: 1572-AB

Floor-1, 1 1 piece(s) 2 x 10 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	494 @ 4 1/2"	2430 (4.00")	Passed (20%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	417 @ 1' 2 3/4"	1388	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1639 @ 7' 3"	1917	Passed (85%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.334 @ 7' 3"	0.458	Passed (L/495)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.434 @ 7' 3"	0.688	Passed (L/381)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 8" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 3" o/c based on loads applied, unless detailed otherwise.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

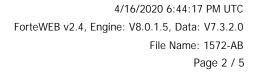
• Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories		
1 - Plate on concrete - HF	5.50"	4.00"	1.50"	116	387	503	1 1/2" Rim Board		
2 - Plate on concrete - HF	5.50"	4.00"	1.50"	116	387	503	1 1/2" Rim Board		
· Dim Reard is assumed to carry all leads applic	• Pim Board is assumed to carry all loads applied directly above it hypassing the member being designed								

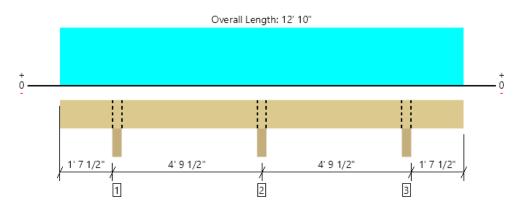
• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 14' 6"	16"	12.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser


The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	Job Notes
Eric L Rice ELR Engineering (206) 200-8764 elreng33@gmail.com	Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB
	Permit Number

Floor-1, 2 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6481 @ 6' 5"	9844 (4.50")	Passed (66%)		1.0 D + 1.0 L (Adj Spans)
Shear (lbs)	2300 @ 7' 2 1/2"	3045	Passed (76%)	1.00	1.0 D + 1.0 L (Adj Spans)
Moment (Ft-lbs)	-2874 @ 6' 5"	2989	Passed (96%)	1.00	1.0 D + 1.0 L (Adj Spans)
Live Load Defl. (in)	0.060 @ 0	0.200	Passed (2L/730)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.063 @ 0	0.200	Passed (2L/688)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/0.2") and TL (2L/0.2").

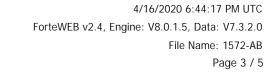
• Top Edge Bracing (Lu): Top compression edge must be braced at 12' 10" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 10" o/c based on loads applied, unless detailed otherwise.

· Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	4.50"	4.50"	2.33"	1365	3722	5087	Blocking
2 - Column - HF	4.50"	4.50"	2.96"	1570	4911	6481	Blocking
3 - Column - HF	4.50"	4.50"	2.33"	1365	3722	5087	Blocking

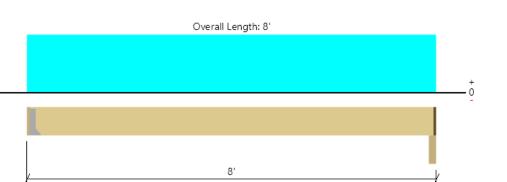
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.


			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 10"	N/A	6.4		
1 - Uniform (PSF)	0 to 12' 10" (Top)	10' 8"	12.0	40.0	Default Load
2 - Uniform (PSF)	0 to 12' 10" (Top)	9' 1"	8.0	-	
3 - Uniform (PSF)	0 to 12' 10" (Top)	10' 8"	12.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD


ForteWEB Software Operator	Job Notes	
Eric L Rice ELR Engineering (206) 200-8764	Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB	
elreng33@gmail.com	Permit Number	Weyerhaeuser

PASSED

Floor-1, 3-option 1 piece(s) 2 x 8 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	367 @ 1 1/2"	911 (1.50")	Passed (40%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	293 @ 8 3/4"	1088	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	666 @ 3' 11 1/2"	1284	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.107 @ 3' 11 1/2"	0.192	Passed (L/862)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.120 @ 3' 11 1/2"	0.383	Passed (L/766)		1.0 D + 0.75 L + 0.75 S (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

2

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 7' 9" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 7' 9" o/c based on loads applied, unless detailed otherwise.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

1

• Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

0

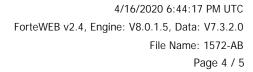
	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Hanger on 7 1/4" HF beam	1.50"	Hanger ¹	1.50"	42	317	132	491	See note 1
2 - Beam - HF	3.50"	2.25"	1.50"	43	323	135	501	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

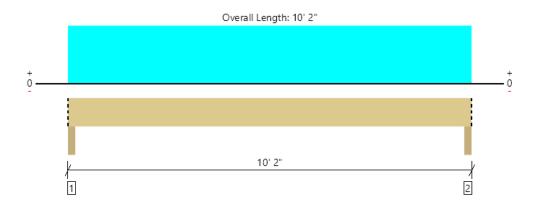
• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			


			Dead	Floor Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 8'	16"	8.0	60.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	Job Notes	
Eric L Rice ELR Engineering (206) 200-8764	Client: Pebble Creek, LLC Project: Pebble Creek - 1572-AB	
elreng33@gmail.com	Permit Numbe	Weyerhaeuser

Floor-1, 4-option 1 piece(s) 4 x 10 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1668 @ 2"	4961 (3.50")	Passed (34%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1257 @ 1' 3/4"	3238	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3780 @ 5' 1"	4242	Passed (89%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.181 @ 5' 1"	0.328	Passed (L/653)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.230 @ 5' 1"	0.492	Passed (L/513)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 2" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 2" o/c based on loads applied, unless detailed otherwise.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)						
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories		
1 - Column - HF	3.50"	3.50"	1.50"	358	1231	515	2104	Blocking		
2 - Column - HF	3.50"	3.50"	1.50"	358	1231	515	2104	Blocking		
Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed										

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 2"	N/A	8.2			
1 - Uniform (PSF)	0 to 10' 2" (Top)	3'	10.0	-	-	
2 - Uniform (PLF)	0 to 10' 2" (Top)	N/A	32.3	242.3	101.3	Linked from: 3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by Architect/Designer: RHD

ForteWEB Software Operator	Job Notes
ELR Engineering (206) 200-8764	Client: Pebble Creek, LLC Project: Pebble Creek - 1572-A
elreng33@gmail.com	Dorn

4/16/2020 6:44:17 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 File Name: 1572-AB Page 5 / 5

Wood Column

Lic. # : KW-06010691

DESCRIPTION: +)> Rear deck option - 4x4 post

Code References

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

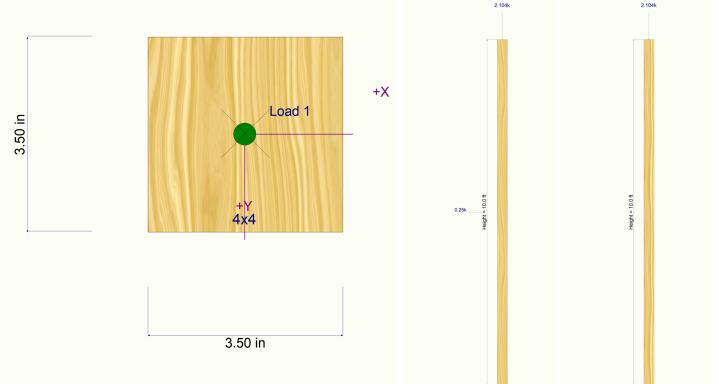
	e Stress Des			Wood Section Name	4x4	d Lumbor	
	ttom Pinned			Wood Grading/Manuf.		d Lumber	
Overall Column Height	(letiene)	10 ft		Wood Member Type	Sawn		
(Used for non-slender calc	ulations)			Exact Width	3.50 in	Allow Stress Modification Fac	tors
Wood Species Hem Fir				Exact Depth	3.50 in	Cf or Cv for Bending	1.50
Wood Grade No.2				Area	12.250 in^2	Cf or Cv for Compression	1.150
Fb + 850 psi	Fv	150 psi		lx	12.505 in^4		1.50
Fb - 850 psi	Ft	525 psi		ly	12.505 in ⁴	· · · · · · ·	1.0
Fc - Prll 1300 psi	Density	26.84 pcf		Incising Factors :	12.000 1	Ct : Temperature Factor	1.0
Fc - Perp 405 psi				for Bending	0.80	Cfu : Flat Use Factor	1.0
E : Modulus of Elasticity	x-x Bending	y-y Bending	Axial	for Elastic Modulus	0.95	Kf : Built-up columns	1.0 NDS 15
Basic	1300	1300	1300		0.00	Use Cr : Repetitive ?	No
Minimum	470	470			lastica (hushli	•	NO
				Brace condition for defl		Length for buckling ABOUT Y-Y A	$v_{i0} = 10 \text{ ft} \ K = 1.0$
				X-X (width) axis :		Length for buckling ABOUT X-X A	
				Y-Y (depth) axis :	Unbraceu		$x_{15} = 10 \text{ II}, \text{ K} = 1.0$
Applied Loads				Service loads	s entered. Lo	ad Factors will be applied fo	r calculations.
AXIAL LOADS Axial Load at 10.0 ft, D = 0. BENDING LOADS	3580, L = 1.2	31, S = 0.5150 k					
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre							
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY Sending & Shear Check Result	ating Mx-x, W	/ = 0.250 k	• 1	Maximum SERVICE	l ateral Load	Reactions	
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY	ating Mx-x, W ts Ratio =		: 1	Maximum SERVICE	Lateral Loac).1250 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY ending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination	ating Mx-x, W ts Ratio = +D+0.750	/ = 0.250 k 0.6860 0L+0.750S+0.450W	: 1).1250 k 0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY Bending & Shear Check Resul PASS Max. Axial+Bending Stress	ating Mx-x, W Its Ratio = +D+0.750 Comp + Mxx	/ = 0.250 k 0.6860 0L+0.750S+0.450W	4	Top along Y-Y Top along X-X	0.1250 k 0.0 k	Bottom along Y-Y Bottom along X-X	
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY ending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forumla 10 Location of max.above base At maximum location values	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx	/ = 0.250 k 0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 t	ft	Top along Y-Y (Top along X-X Maximum SERVICE Load	0.1250 k 0.0 k I Lateral Deflec	Bottom along Y-Y (Bottom along X-X	0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY eending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forumla 10 Location of max.above base At maximum location values Applied Axial	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx	/ = 0.250 k 0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 1.690 k	ft <	Top along Y-Y (Top along X-X Maximum SERVICE Load Along Y-Y 0	0.1250 k 0.0 k I Lateral Deflect 0.5886 in a	Bottom along Y-Y (Bottom along X-X) Bottom along X-X tions at 5.034 ft above base	0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY eending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forumla 10 Location of max.above base At maximum location values Applied Axial Applied Mx	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx	V = 0.250 k 0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 1.690 H 0.2794	ft < k-ft	Top along Y-Y (Top along X-X Maximum SERVICE Load Along Y-Y 0 for load combine	0.1250 k 0.0 k I Lateral Deflect 0.5886 in a ation : W Only	Bottom along Y-Y (Bottom along X-X) Bottom along X-X stions It 5.034 ft above base	0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY ending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forumla 10 Location of max.above base At maximum location values Applied Axial Applied Mx Applied My	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx	V = 0.250 k 0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 1.690 H 0.2794 0.0	ft < k-ft k-ft	Top along Y-Y (Top along X-X Maximum SERVICE Load Along Y-Y () for load combina Along X-X	0.1250 k 0.0 k I Lateral Deflect 0.5886 in a ation : W Only 0.0 in a	Bottom along Y-Y (Bottom along X-X) Bottom along X-X stions It 5.034 ft above base	0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY ending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forunla 10 Location of max.above base At maximum location values Applied Axial Applied Mx	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx	V = 0.250 k 0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 1.690 H 0.2794	ft < k-ft psi	Top along Y-Y (Top along X-X Maximum SERVICE Load Along Y-Y () for load combina Along X-X for load combina	0.1250 k 0.0 k I Lateral Deflect 0.5886 in a ation : W Only 0.0 in a ation : n/a	Bottom along Y-Y Bottom along X-X etions It 5.034 ft above base tt 0.0 ft above base	0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY ending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forumla 10 Location of max.above base At maximum location values Applied Axial Applied Mx Applied My Fc : Allowable	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx are	V = 0.250 k 0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 1.690 H 0.2794 0.0	ft k k-ft k-ft psi	Top along Y-Y (Top along X-X Maximum SERVICE Load Along Y-Y () for load combina Along X-X	0.1250 k 0.0 k I Lateral Deflect 0.5886 in a ation : W Only 0.0 in a ation : n/a	Bottom along Y-Y Bottom along X-X etions It 5.034 ft above base tt 0.0 ft above base	0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY ending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forumla 10 Location of max.above base At maximum location values Applied Axial Applied Mx Applied My Fc : Allowable PASS Maximum Shear Stress Ra	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx are	0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 1.690 F 0.2794 0.0 316.144 0.04783	ft k-ft k-ft psi : 1	Top along Y-Y (Top along X-X Maximum SERVICE Load Along Y-Y () for load combina Along X-X for load combina	0.1250 k 0.0 k I Lateral Deflect 0.5886 in a ation : W Only 0.0 in a ation : n/a	Bottom along Y-Y (Bottom along X-X) stions It 5.034 ft above base t 0.0 ft above base ble stresses	0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY ending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forumla 10 Location of max.above base At maximum location values Applied Axial Applied Mx Applied My Fc : Allowable PASS Maximum Shear Stress Ra Load Combination	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx are	0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 1.690 F 0.2794 0.0 316.144 +D+0.60W	ft k-ft k-ft psi : 1	Top along Y-Y (Top along X-X Maximum SERVICE Load Along Y-Y () for load combina Along X-X for load combina	0.1250 k 0.0 k I Lateral Deflect 0.5886 in a ation : W Only 0.0 in a ation : n/a	Bottom along Y-Y (Bottom along X-X) stions It 5.034 ft above base t 0.0 ft above base ble stresses	0.0 k
Axial Load at 10.0 ft, D = 0. BENDING LOADS Lat. Point Load at 5.0 ft cre DESIGN SUMMARY ending & Shear Check Resul PASS Max. Axial+Bending Stress Load Combination Governing NDS Forunla 10 Location of max.above base At maximum location values Applied Axial Applied Mx Applied My Fc : Allowable PASS Maximum Shear Stress Ra Load Combination Location of max.above base	ating Mx-x, W ts Ratio = +D+0.750 Comp + Mxx are	0.6860 0L+0.750S+0.450W , NDS Eq. 3.9-3 5.034 1.690 F 0.2794 0.0 316.144 +D+0.60W 4.966	ft k-ft k-ft psi : 1 ft	Top along Y-Y (Top along X-X Maximum SERVICE Load Along Y-Y () for load combina Along X-X for load combina	0.1250 k 0.0 k I Lateral Deflect 0.5886 in a ation : W Only 0.0 in a ation : n/a	Bottom along Y-Y (Bottom along X-X) stions It 5.034 ft above base t 0.0 ft above base ble stresses	0.0 k

	0	•	<u> Maximum Axial + Bending Stress Ratios</u>			Maximu	<u>Maximum Shear Ra</u>		
Load Combination	С _D	С _Р	Stress Ratio	Status	Location	Stress Ratio	Status	Location	
D Only	0.900	0.283	0.1021	PASS	0.0 ft	0.0	PASS	10.0 ft	
+D+L	1.000	0.257	0.4280	PASS	0.0 ft	0.0	PASS	10.0 ft	
+D+S	1.150	0.226	0.2355	PASS	0.0 ft	0.0	PASS	10.0 ft	
+D+0.750L	1.250	0.209	0.3410	PASS	0.0 ft	0.0	PASS	10.0 ft	
+D+0.750L+0.750S	1.150	0.226	0.4443	PASS	0.0 ft	0.0	PASS	10.0 ft	
+D+0.60W	1.600	0.165	0.4330	PASS	5.034 ft	0.04783	PASS	4.966 ft	
+D+0.750L+0.450W	1.600	0.165	0.5386	PASS	5.034 ft	0.03587	PASS	10.0 ft	
+D+0.750L+0.750S+0.450W	1.600	0.165	0.6860	PASS	5.034 ft	0.03587	PASS	10.0 ft	
+0.60D+0.60W	1.600	0.165	0.4098	PASS	5.034 ft	0.04783	PASS	4.966 ft	

Printed: 16 APR 2020, 11:21AM

File = C:\Dropbox\1_ELRE~1\1_ELRE~1\2020\1-RHD\MTT\PEBBLE~1\1572.ab\Enercalc\1572.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.28 .

ELR Engineering


Wood Column Lic. # : KW-06010691

File = C:\Dropbox\1_ELRE~1\1_ELRE~1\2020\1-RHD\MTT\PEBBLE~1\1572-ab\Enercalc\1572.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.28 . ELR Engineering

DESCRIPTION: +)> Rear deck option - 4x4 post

Load Combination Results

			Maximum Axial	+ Bending	Stress Ratios	Maximu	m Shear Ra	atios
Load Combination	C D	СР	Stress Ratio	Status	Location	Stress Ratio	Status	Location
+0.60D	1.600	0.165	0.0590	PASS	0.0 ft	0.0	PASS	10.0 ft
Sketches								

ELR Engineering 1915 Dayton Ave NE Renton, WA 98056 phone: (206) 200-8764 email: elreng33@gmail.com

Lateral Calculations

ASCE Seismic Base Shear

Lic. # : KW-06010691

Printed:	5 MAR 2020,	8:17AM

File = C:\Dropbox\1_ELRE~1\1_ELRE~1\2020\1-RHD\MTT\PEBBLE~1\1572.ab\Enercalc\1572.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.20 . ELR Engineering

Risk Category						Calculatio	ns per ASCE 7-10
Risk Category of Building or Other Structure : "II"	: All Buildin	gs and othe	er structure	es except tho	se listed as Category I, III, and IV	ASCE 7-1	0, Page 2, Table 1.5-1
Seismic Importance Factor =	1					ASCE 7-1	0, Page 5, Table 1.5-3
Gridded Ss & S1values ASCE-7-10 Standard							ASCE 7-10 11.4.1
Max. Ground Motions, 5% Damping :			Latitude	=	47.528 deg No	orth	
$S_S = 1.579 \text{ g}, 0.2 \text{ sec respons}$ $S_1 = 0.6105 \text{ g}, 1.0 \text{ sec respons}$			Longitud	e =	122.627 deg W		
Site Class, Site Coeff. and Design Category							
Site Classification "D" : Shear Wave Velocity 600 to 1,200 f	t/sec		=	D		A	SCE 7-10 Table 20.3-
Site Coefficients Fa & Fv (using straight-line interpolation from table values)		Fa Fv	= =	1.00 1.50		ASCE 7-10	Table 11.4-1 & 11.4-2
Maximum Considered Earthquake Acceleration	S _{MS} = F	Fa * Ss	=	1.579			ASCE 7-10 Eq. 11.4-1
	S _{M1} = I		=	0.916			ASCE 7-10 Eq. 11.4-2
Design Spectral Acceleration	S _= S	*2/3	=	1.053		,	ASCE 7-10 Eq. 11.4-3
	S _{D1} = S		=	0.611			ASCE 7-10 Eq. 11.4-4
Seismic Design Category			=	D		ASCE 7	7-10 Table 11.6-1 & -2
Resisting System						AS	CE 7-10 Table 12.2-1
System Overstrength Factor "Wo " = 3	.50 .00 .00	Cate Cate Cate	gory "A & I gory "C" Li gory "D" Li gory "E" Li gory "F" Li	mit: mit: mit:	No Limit No Limit Limit = 65 Limit = 65 Limit = 65		
Lateral Force Procedure						ASCE	7-10 Section 12.8.2
Equivalent Lateral Force Procedure <u>The "Equivalent Lateral</u>	Force Proc	cedure" is	being use	ed according	g to the provisions of ASCE 7-1	<u>0 12.8</u>	
Determine Building Period							Use ASCE 12.8-7
		from base t	o highest Га = Ct * (l		22.080 ft 0.204 sec 6.000 sec		
TE . Long-period administration period per AOOE 7-10 maps			ildina Dari	od " Ta " Cal	culated from Approximate Method s	elected	= 0.204 sec
" Cs " Response Coefficient		Du	lianig i di				- 0.204 sec 7-10 Section 12.8.1.1
S _{DS} : Short Period Design Spectral Response	=	1.053		From Fr	q. 12.8-2, Preliminary Cs	=	
" R " : Response Modification Factor	=	6.50			q. 12.8-3 & 12.8-4 , Cs need not ex		0.461
" I " : Seismic Importance Factor	=	1			q. 12.8-5 & 12.8-6, Cs not be less t		
		C	s : Seisi	nic Respo	nse Coefficient =	=	0.1619
Seismic Base Shear						ASC	E 7-10 Section 12.8.1
Cs = 0.1619 from 12.8.1.1				W (see	Sum Wi below) =	55.18 k	

Project Title: Engineer: ELR Project ID: Project Descr:

Printed: 5 MAR 2020, 8:17AM

ASCE Seismic Base Shear

File = C:\Dropbox\1_ELRE~1\1_ELRE~1\2020\1-RHD\MTT\PEBBLE~1\1572-ab\Enercalc\1572.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.20 . ELR Engineering

Lic. # : KW-06010691

Level #	Wi : V	Veight	Hi : Heigh	t	(Wi * Hi^k)	Cvx	Fx=Cvx * V	Sum Story She	ar S	Sum Story Momer
2		21.37	18.92		404.32	0.5509	4.92	4.9	92	0.00
1		33.81	9.75		329.65	0.4491	4.01	8.9		45.14
Sum	Wi =	55.18 k	Sum W	/i*Hi =	733.97 k-ft		Total Base Shear	= 8.94 k Base Mome	ent =	132.3 k-ft
iaphragm Fo	rces : Seism	ic Design Ca	tegory "B" to	"F"					ASCE	7-10 12.10.1.1
Level #	Wi	Fi	Sum Fi	Sum Wi	Fpx : Calco	d Fp	ox : Min F	px : Max	Fpx	Dsgn. Force
2	21.37	4.92	4.92	21.37	4.92		4.50	9.00	4.92	4.92
	00.04	4.01	8.94	55.18	5.48		7.12	14.24	7.12	7.12
1	33.81	7.01	0.01							

MAX Req'd Force @ Level 0.40 * S _{DS}I * Wpx

Fpx : Design Force @ Level Wpx * SUM(x->n) Fi / SUM(x->n) wi, x = Current level, n = Top Level

Project Title: Engineer: ELR Project ID: Project Descr:

Printed: 5 MAR 2020, 8:22AM

ASCE 7-10 Wind Forces, Chapter 27, Part I

File = C:\Dropbox\1_ELRE~1\1_ELRE~1\2020\1-RHD\MTT\PEBBLE~1\1572.ab\Enercalc\1572.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.20 . ELR Engineering

DESCRIPTION: > ASCE 7-10 Wind Load Determination

> ASCE 7-10 wind forces

Aopenings >= 0.8 * Agross ?

Basic Values

Lic. # : KW-06010691

Risk Category V : Basic Wind Speed	2 per A 110.0	SCE 7-10 Table 1.5			rection (B or L) = ction (B or L) =	37.0 ft 34.0 ft	
Kd : Directionality Factor	0.850 per A	SCE 7-10 Table 26	.6-1 h : Mean Roof h	neight	=	22.080 ft	t
Exposure Category	per ASCE 7-10 Se	ction 26.7	Topographic Factor per ASC	E 7-10 Sec 26.8 8	Figure 26.8-1		
North : Exposure B South : Exposure B Building Period & Flexibility Cat	West :	Exposure B Exposure B	North : K1 = South : K1 = East : K1 = West : K1 =	K2 = K2 = K2 = K2 =	K3 = K3 = K3 = K3 =	Kzt = 1.0 Kzt = 1.0	000 000 000 000

User has specified the building frequency is >= 1 Hz, therefore considered RIGID for both North-South and East-West directions.

Building Story Data							
	hi	Story H	t E _R :X	K E _R : X			
Level Description	ft	ft	ft	ft			
Upper	18.92	9.1	7 0.000	0.000			
Lower	9.75	9.75	5 0.000	0.000			
Gust Factor	For wind	coming fro	m direction indic	ated			
North =	0.850	South	=	0.850			
East =	0.850	West	=	0.850			
Enclosure							
Check if Building Qual	ifies as "Op	en"					
-	North V	Vall	South Wall	East Wall	West Wall	Roof	<u>Total</u>
Agross Aopenings	64	.3.0 ft^2 ft^2	643.0 ft^2 ft^2	700.0 ft^2 ft^2	700.0 ft^2 ft^2	966.0 ft^2 ft^2	3,652.0 ft^2 0.0 ft^2

All four Agross values must be non-zero

No

No

Building does NOT qualify as "Open"

User has specified the Building is to be considered Enclosed when NORTH elevation receives positive external pressure User has specified the Building is to be considered Enclosed when SOUTH elevation receives positive external pressure User has specified the Building is to be considered Enclosed when EAST elevation receives positive external pressure User has specified the Building is to be considered Enclosed when WEST elevation receives positive external pressure User has specified the Building is to be considered Enclosed when WEST elevation receives positive external pressure User has specified the Building is to be considered Enclosed when WEST elevation receives positive external pressure Velocity Pressures

No

No

When the following wa	alls experien	ce leeward or si	dewall pressures,	the value of Kh	shall be (per Tabl	e 27.3-1) :		
North Wall = 0.	6418 psf	South Wall =	0.6418 psf	East Wall =	0.6418psf	West Wall =	0.6418 psf	
When the following wa	alls experien	ce leeward or si	dewall pressures,	the value of qh	shall be (per Table	e 27.3-1) :		
North Wall =	16.90 psf	South Wall =	16.90 psf	East Wall =	16.90psf	West Wall =	16.90 psf	
qz : Windward Wall Ve			neights per Eq. 27	.3-1				
	Nor	th Elevation	South	Elevation	East	Elevation	West Ele	vation
Height Above Base (ft)	Kz	qz	Kz	qz	Kz	qz	Kz	qz
0.00	0.57	75 15.13	0.575	15.13	0.57	5 15.13	0.575	15.13
4.00	0.57	75 15.13	0.575	15.13	0.57	5 15.13	0.575	15.13
8.00	0.57	75 15.13	0.575	15.13	0.57	5 15.13	0.575	15.13
12.00	0.57	75 15.13	0.575	15.13	0.57	5 15.13	0.575	15.13

	COITI							Printed: 5 MAR 202	20, 8:22AM
ASCE 7-10 Wi	ind Forces	s, Chapter 27	', Part I	File	e = C:\Dro	pbox\1_ELRE~1\1_ELRE~ Softwa	1\2020\1-RHD\MTT\PEBE re copyright ENERCALC,		
Lic. # : KW-06010691								ELR	Engineering
DESCRIPTION: >	ASCE 7-10 Wir	nd Load Determinat	ion						
16.00	0.585	15.41	0.585	15.4	1	0.585	15.41	0.585	15.41
20.00	0.624	16.43	0.624	16.43	3	0.624	16.43	0.624	16.43
Pressure Coefficie	<u>nts</u>			GCpi	Values	when elevation rec	eives positive exte	ernal pressure	
GCpi : Internal press	ure coefficient, _I North	per sec. 26.11 and Ta South	able 26.11-1 Ea	st		West			
+/-	0.180	+/- 0.180	+/-	0.180	+/-	0.180			
Windward Wall	North 0.80	hen elevation receive South 0.80	Ea			West 0.80			
Leeward Wall	-0.480	-0.480		-0.50		-0.50			
Side Walls	-0.70	-0.70		-0.70		-0.70			
User Defined Roof Io	cations and Net	Directional Pressur	e Coefficient	s : Cp oi	r Cn				
		Cp or Cn Values w	hen the indica	ated build	ding elev	ation receives positiv	e external pressure	•	
Description		North	Sc	outh		East	West		
Perp: windward						-0.330	-0.330		
Perp: leeward						-0.60	-0.60		
Perp: windward		-0.250	-	0.250					
Perp: leeward		-0.60		-0.60					
Perp: windward		0.20		0.20					
Perp: windward						0.150	0.150		

Wind Pressures

Wind Pressures when NORTH Elevation receives positive external wind pressure

	Positive Internal	Negative Interna	<u>l</u>
Leeward Wall Pressures	-9.937 psf	-3.853 psf	
Side Wall Pressures	-13.097 psf	-7.013 psf	
Windward Wall Pressures . Height Above Base (ft)	· · Positive Internal Pressure (psf)	Negative In Pressure	iternal (psf)
0.00		7.25	13.33
4.00		7.25	13.33
8.00		7.25	13.33
12.00		7.25	13.33
16.00		7.44	13.52
20.00		8.13	14.21
Roof Pressures	Positi	ve Internal	Negative Internal
Description	Press	sure (psf)	Pressure (psf)
Perp: windward		-6.63	-0.55
Perp: leeward	-	11.66	-5.58
Perp: windward		-0.17	5.91

Wind Pressures when SOUTH Elevation receives positive external wind pressure

	Positive Internal	Negative Internal
Leeward Wall Pressures	-9.937 psf	-3.853 psf
Side Wall Pressures	-13.097 psf	-7.013 psf
Windward Wall Pressures	 Positive Internal	Negative Internal
Height Above Base (ft)	Pressure (psf)	Pressure (psf)

				I.
SCE 7-10 Wind F	orces, Chapter 2	7, Part I	File = C:\Dropbox\1_ELRE	~1\1_ELRE~1\2020\1-RHD\MTT\PEBBL Software copyright ENERCALC, II
: KW-06010691				
SCRIPTION: > ASCE 7	7-10 Wind Load Determin	ation		
0.00	7	.25	13.33	
4.00	ī	.25	13.33	
8.00	7	.25	13.33	
12.00	1	.25	13.33	
16.00	1	.44	13.52	
20.00	8	.13	14.21	
Roof Pressures	Positive	Internal	Negative Internal	
Description		re (psf)	Pressure (psf)	
Perp: windward	-6	.63	-0.55	
Perp: leeward	-11	.66	-5.58	
Perp: windward	-(.17	5.91	
Wind Pressures when EA	AST Elevation receives	positive extern	al wind pressure	
	Positive Internal	Negative Interr	al	
Leeward Wall Pressures	-10.224 psf	-4.140 psf		
Side Wall Pressures	-13.097 psf	-7.013 psf		
Windward Wall Pressures Height Above Base (ft)	··· Positive Internal Pressure (psf)	Negative Pressure		
0.00	. ,	.25	13.33	
4.00	ī	.25	13.33	
8.00	-	25	13 33	

Leeward Wall Pressures Side Wall Pressures	-10.224 psf -13.097 psf	-4.140 psf -7.013 psf	
Windward Wall Pressures Height Above Base (ft)	Positive Internal Pressure (psf)	Negative I Pressure	
0.00	7	.25	13.33
4.00	7	.25	13.33
8.00	7	.25	13.33
12.00	7	.25	13.33
16.00	7	′.44	13.52
20.00	8	3.13	14.21
Roof Pressures	Positive	Internal	Negative Internal
Description	Pressu	re (psf)	Pressure (psf)
Perp: windward	-7	7.78	-1.70
Perp: leeward	-11	.66	-5.58
Perp: windward	-0).89	5.20

Wind Pressures when WEST Elevation receives positive external wind pressure

<u>F</u>	Positive Internal	Negative Internal	!
Leeward Wall Pressures Side Wall Pressures	-10.224 psf -13.097 psf	-4.140 psf -7.013 psf	
Windward Wall Pressures Height Above Base (ft)	Positive Internal Pressure (psf)	Negative In Pressure	ternal (psf)
0.00	-	7.25	13.33
4.00	-	7.25	13.33
8.00	-	7.25	13.33
12.00	-	7.25	13.33
16.00	-	7.44	13.52
20.00	8	3.13	14.21
Roof Pressures Description		e Internal re (psf)	Negative Internal Pressure (psf)
Perp: windward	-	7.78	-1.70
Perp: leeward	-11	1.66	-5.58
Perp: windward	-().89	5.20

Printed: 5 MAR 2020, 8:22AM

Project Title: Engineer: ELR Project ID: Project Descr:

Printed: 5 MAR 2020, 8:22AM

ASCE 7-10 Wind Forces, Chapter 27, Part I

Lic. # : KW-06010691

File = C:\Dropbox\1_ELRE~1\1_ELRE~1\2020\1-RHD\MTT\PEBBLE~1\1572-ab\Enercalc\1572.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.20 .

ELR Engineering

DESCRIPTION: > ASCE 7-10 Wind Load Determination

Story Forces for Design Wind Load Cases

Values below are calculated based on a building with dimensions B x L x h as defined on the "Basic Values" tab.

Load Case	Windward Wall	Building level	Ht. Range	Trib. Height	In "Y" Direction	components (k) In "X" Direction	" Shear		lt, (ft-k
									., (
CASE 1	North	Level 2	14.34' -> 18.92'	4.59	-2.73				
CASE 1	North	Level 1	4.88' -> 14.34'	9.46	-5.53				
CASE 1	South	Level 2	14.34' -> 18.92'	4.59	2.73				
CASE 1	South	Level 1	4.88' -> 14.34'	9.46	5.53				
CASE 1	East	Level 2	14.34' -> 18.92'	4.59		-3.02			
CASE 1	East	Level 1	4.88' -> 14.34'	9.46		-6.12			
CASE 1	West	Level 2	14.34' -> 18.92'	4.59		3.02			
CASE 1	West	Level 1	4.88' -> 14.34'	9.46		6.12			
CASE 2	North	Level 2	14.34' -> 18.92'	4.59	-2.05			5.10 +/-	10.4
CASE 2	North	Level 1	4.88' -> 14.34'	9.46	-4.15			5.10 +/-	21.
CASE 2	South	Level 2	14.34' -> 18.92'	4.59	2.05			5.10 +/-	10.
CASE 2	South	Level 1	4.88' -> 14.34'	9.46	4.15			5.10 +/-	21.
CASE 2	East	Level 2	14.34' -> 18.92'	4.59		-2.26	5.55	+/-	12.
CASE 2	East	Level 1	4.88' -> 14.34'	9.46		-4.59	5.55	+/-	25.
CASE 2	West	Level 2	14.34' -> 18.92'	4.59		2.26	5.55	+/-	12.
CASE 2	West	Level 1	4.88' -> 14.34'	9.46		4.59	5.55	+/-	25.
CASE 3	North & East	Level 2	14.34' -> 18.92'	4.59	-2.05	-2.26			-
CASE 3	North & East	Level 1	4.88' -> 14.34'	9.46	-4.15	-4.59			-
CASE 3	North & West	Level 2	14.34' -> 18.92'	4.59	-2.05	2.26			-
CASE 3	North & West	Level 1	4.88' -> 14.34'	9.46	-4.15	4.59			-
CASE 3	South & West	Level 2	14.34' -> 18.92'	4.59	2.05	2.26			-
CASE 3	South & West	Level 1	4.88' -> 14.34'	9.46	4.15	4.59			-
CASE 3	South & East	Level 2	14.34' -> 18.92'	4.59	2.05	-2.26			-
CASE 3	South & East	Level 1	4.88' -> 14.34'	9.46	4.15	-4.59			-
CASE 4	North & East	Level 2	14.34' -> 18.92'	4.59	-1.54	-1.70	5.55	5.10 +/-	17.
CASE 4	North & East	Level 1	4.88' -> 14.34'	9.46	-3.11	-3.44	5.55	5.10 +/-	35.
CASE 4	North & West	Level 2	14.34' -> 18.92'	4.59	-1.54	1.70	5.55	5.10 +/-	17.
CASE 4	North & West	Level 1	4.88' -> 14.34'	9.46	-3.11	3.44	5.55	5.10 +/-	35.
CASE 4	South & West	Level 2	14.34' -> 18.92'	4.59	1.54	1.70	5.55	5.10 +/-	17.
ASE 4	South & West	Level 1	4.88' -> 14.34'	9.46	3.11	3.44	5.55	5.10 +/-	35
CASE 4	South & East	Level 2	14.34' -> 18.92'	4.59	1.54	-1.70	5.55	5.10 +/-	17
CASE 4	South & East	Level 1	4.88' -> 14.34'	9.46	3.11	-3.44	5.55	5.10 +/-	35.
1in per ASCE 27.4.7	North	Level 2	14.34' -> 18.92'	4.59	-2.49				-
1in per ASCE 27.4.7	North	Level 1	4.88' -> 14.34'	9.46	-5.15				-
1in per ASCE 27.4.7	South	Level 2	14.34' -> 18.92'	4.59	2.49				-
lin per ASCE 27.4.7	South	Level 1	4.88' -> 14.34'	9.46	5.15				-
lin per ASCE 27.4.7	East	Level 2	14.34' -> 18.92'	4.59		-2.71			-
lin per ASCE 27.4.7	East	Level 1	4.88' -> 14.34'	9.46		-5.60			-
/lin per ASCE 27.4.7	West	Level 2	14.34' -> 18.92'	4.59		2.71			-

SCE 7-10 Wind	Forces, Chap	ter 27, Part		1_ELRE~1\1_ELRE~1\2020 Software cop					20.2.20
DESCRIPTION: > ASCI	E 7-10 Wind Load De	etermination							ginee
lin per ASCE 27.4.7	West Le	vel 1 4.88' ->	14.34' 9.46		5.60				
ase Shear for Design	Wind Load Cases	S						North +Y	
Values below are calculate			B x L x h as defined on	the "General" tab.				+ I 	
				ar Components (k)			West -		— +>
Load Case	Windward Wall	Leeward Wall	In "Y" Direction	In "X" Direction	Ν	VIt, (ft-k)			• • •
Case 1	North	South	-8.25				_		
Case 1	South	North	8.25						
Case 1	East	West		-9.13					
Case 1	West	East		9.13					
Case 2	North	South	-6.19		+/-	31.6			
Case 2	South	North	6.19		+/-	31.6			
Case 2	East	West		-6.85	+/-	38.0			
Case 2	West	East		6.85	+/-	38.0			
Case 3	North & East	South & West	-6.19	-6.85					
Case 3	North & West	South & East	-6.19	6.85					
Case 3	South & West	North & East	6.19	6.85					
Case 3	South & East	North & West	6.19	-6.85					
Case 4	North & East	South & West	-4.65	-5.14	+/-	52.2			
Case 4	North & West	South & East	-4.65	5.14	+/-	52.2			
Case 4	South & West	North & East	4.65	5.14	+/-	52.2			
Case 4	South & East	North & West	4.65	-5.14	+/-	52.2			
Min per ASCE 27.4.7	North	South	-7.64						
Min per ASCE 27.4.7	South	North	7.64						
Min per ASCE 27.4.7	East	West		-8.31					
Min per ASCE 27.4.7	West	East		8.31					

				I		ļ										
		Wind (E-W loads)	Wind (N-S loads)	Seismic	_	WIND	0.6			<u>Sds</u>	SEISMIC	0.7	1.3	Project:	1572-AB	
	Hstory	B (< N-S >)	L (< E-W >)	Alevel		N-S loads	E-W loads	Fpy (N-S)	Fpx (E-W)	1.053	N-S loads	E-W loads	Fpxy (both)	Date:	3/5/2020	
Roof		36.5	24	966	Pw x B x L =		2.98	1.93	2.98	Cs x W =	4.92	4.92	4.92	Revised:		
	8.08									4	*			Description:	Wind/EQ Design	
Roof-1		37	34	1375	Pw x B x L =	5.53	6.12	5.53	6.12	Cs x W =	4.01	4.01	7.12	Code:	AWC-SDPWS-2015	
	9.08															
Roof-2		0	0	0	Pw x B x L =	0.00	0.00	0.00	0.00	Cs x W =	0.00	0.00	0.00			
	000	_		Base shear >	PwxRxI=	7.46	9.10			Cs x W =	8 93	8 93				
													_	Summary		
			Design base	Design base shear (ASD) >	x 0.6	4.47	5.46	kips		х р х 0.7	8.13	8.13	kips	check:	Ю	
SHEARWALLS	ST				ASD	ASD							Demand			
		-	UNIM	SEISMIC	Flexible	Flexible	Full height wall	segments with	Full height wall segments with A.R. $\leq 3.5.1$ (except portal frames - PEXX)	xcept portal fra	mes - PFXX)		Flexible	Rigid	Flexible	Rigid
Roof	N-S loads	Grid	trib. width	trib. area	Fwind	Fseismic	L1	L2	L3	L4	L5	P1	Vwind(plf)	Vwind(plf)	Vseismic(plf)	Vseismic(plf)
	< H'(if applies)	8														
	< H'(if applies)	7														
	< H'(if applies)	9														
	< H'(if applies)	5														
	< H'(if applies)	4														
	< H'(if applies)	3	12.00	483	0.58	2.24	32.67						18		69	
	< H'(if applies)	2														
	< H'(if applies)	1	12.00	483	0.58	2.24	14.50	8.25					25		98	
min Li =	2.309	ŏ	24	966		-										
I				Ю	1.16	4.48									ļ	
	E-W loads	Grid	trib. width	trib. area	Fwind	Fseismic	L1	L2	L3	L4	LS	P1	Vwind(plf)	Vwind(plf)	Vseismic(plf)	Vseismic(plf)
	< H'(if applies)	т														
	< H'(if applies)	g														
	< H'(if applies)	LL I														
	< H'(if applies)	ш		ļ												
	< H'(if applies)	D	16.33	451	0.80	2.09	13.58						29		154	
	< H'(if applies)	ء د	20.17	1	000	05 5	0 63						Ę			
	 In (II applies) In (If applies) 	_ <	/ T'07	CTC	66.0	60.7	10.0						707		241	
min Li =		č	36 5	966												
3		5		č	1.79	4.48										
Roof-1	N-S loads	Grid	trih width	trih area	Fwind	Fseismic	5	61	6	14	5	16	Vwind(nlf)	Vwind(nff)	Vseismic(nlf)	Vseismic(nlf)
5	< H'(if applies)	8		5			1	;	}		}	2	1	1	H	
	< H'(if applies)	7														
	< H'(if applies)	9														
	< H'(if applies)	5														
	< H'(if applies)	4	9.83	407	1.25	2.20	35.00						36		63	
	< H'(if applies)	3														
	< H'(if applies)	2	17.17	681	1.96	2.93	16.83						117		174	
	< H'(if applies)	1	7.00	287	1.26	3.00	13.83	14.50					45		106	
min Li =	2.595	Ю	34	1375	LV V	61.0										
	E-W/loade	- Crid	trib width	+rih area	Ewind	6.13 Ecoicmic						9-	V/wind/nlf)	\/wind/nff)	Vcaicmic/nlf)	Vreaismic/nff)
		יי פֿי	מ וח. אומנוו	נווט. מוכמ	LWIIU		E	Ľ	3	1	2	2	/iid/nuim a	v willu/pii/		Variation
	< H'(if applies)	ΞU														
	< H'(if applies)	יים						T	T							
	< H'(if applies)	. u														
	 H'(if applies) 		9.17	298	1.71	2.88	13.83	10.00					72		121	
	< H'(if applies)	5 U	17.50	613	1.86	1.92	19.17						97		100	
	< H'(if applies)	в														
	< H'(if applies)	A	10.33	464	1.89	3.32	9.17	1.83	2.00				145		255	
min Li =	2.595	ð	37	1275												
		5	5	C / CT												

ELR Engineering 1915 Dayton Ave NE Renton, WA 98056 206.200.8764 elreng33@gmail.com

					4	
	no				c,	
	Assumed orientation				2	"N-S" grids
	Ass				1	< + X
Е	D	С	В	A	0'0	
I	I	"E-W" grids	<	+ ≻	I	

Total seismic capacity of shear line with individual segment capacities within the shearline with A.R.i > 2:1 reduced
by 2 Li/H per 2015 SDPWS 4.3.3.4.1 for shear lines with more than one shear wall and 1.25-H/8Li per 2015
SDPWS 4.3.4.2 for shear lines with one wall only

4.2 for shear lines with one wall only W2 2W3 W4 W3 W2 2W3 11.546 14.888 19.445 29.775 8.040 10.367 13.541 20.734						
W2 2W3 2W2 Flexible 2W2 Flexible 19.445 29.775 44.519 W6 13.541 20.734 31.001 W6	Governs	W or EQ			EQ	EQ
W2 2W3 2W2 2W3 2W2 2W2 2W2 2W2 2W2 2W2 2		Rigid				
W3 4.3.4.2 for shear lines with one wall only W2 2W3 2W2 W6 W4 W3 W2 2W3 2W2 Y1 W3 W2 2W3 2W2 Y2 Y2 2W3 2W2 Y1 Y3 Y2 2W3 2W2 Y3 Y3 Y3 Y3 Y3 Y300 11.546 14.888 19.445 29.775 44.519 Y300 11.546 10.367 13.541 20.734 31.001		Flexible			9M6	9M6
W3 4.3.4.2 for shear lines with one wall only W2 2W3 W6 W4 W3 W2 2W3 Y1 W3 W2 2W3 Y2 Y4 Y3 Y2 2W3 Y3 Y2 ZW3 Y2 ZW3 Y3 Y3 Y2 ZW3 ZW3 Y3 Y4 Y3 Y2 ZW3 Y300 11.546 14.888 19.445 29.775 Y300 11.546 10.367 13.541 20.734		2W2			44.519	31.001
W3 4.3.4.2 for shear lines with one wall only W6 W4 W6 W4 W3 W2 W6 14.888 7.900 11.546 7.501 8.040		2W3			29.775	20.734
WIS 4.3.4.2 for shear lines with one wall on WIS W6 W4 W3 W6 14.888 13.888 7.900 11.546 14.888 5.501 8.040 10.367	١	W2			19.445	13.541
VV5 4.3.4.2 for shear lines w V6 W4 V6 13.4.2 for shear lines w V4 V6 11.546 11.546 5.501 8.040	vith one wall on	W3			14.888	10.367
W6 4.3.4.2 W6 7.900 7.501	for shear lines w	W4			11.546	8.040
	SDPWS 4.3.4.2	W6			7.900	5.501

W6 W4 W3 W2 ZW3 ZW2 Flexible Rigid W or EQ			EQ	EQ	
Rigid					
Flexible			9M	W4	
2W2			18.505	13.177	
2W3			12.377	8.813	
W2			8.083	5.756	
W3			6.188	4.407	
W4			4.799	3.417	
W6			3.284	2.338	

W or EQ			EQ	EQ	EQ
Rigid					
Flexible			9M	9M	9M
2W2			47.694	22.934	38.605
2W3			31.899	15.339	25.820
W2			20.832	10.017	16.862
W3			15.950	7.669	12.910
W4			12.369	5.948	10.012
W6			8.463	4.069	6.850

W or EQ			ĒQ	ĒQ	EQ
Rigid					
W3 W2 2W3 2W2 Flexible Rigid W or EQ			9M	9M	W4
2W2			32.473	26.123	14.701
2W3			21.719	17.472	9.832
W2			14.184	11.410	6.421
W3			10.859	8.736	4.916
W6 W4			8.422	6.775	3.813
W6			5.762	4.635	2.609

																	holdown																			holdown
SEISMIC	net o/t (lbs)						-2150		-404						609		1543							-1013		879	-842						-286	-737		1981
WIND SEISMIC	net o/t (lbs)						-2560		-994	-					-159		374					•	-	-1260	-	359	-1399						-733	-768		981
0.6	resist C (lbs)						2703		1200						635		452							1584		701	1804						1384	1649		339
SEISMIC							554		795	 					1244		1995							571		1579	962						1098	912	_	2320
MIND	o/t T (lbs)						143		205						476		826							324		1060	404						652	881		1320
	conc. (lbs)																																			
Available resisting D	uni. (plf)						276		276						156		156							151		139	415						334	287		123
bd shear Avai				-	-	-	ш		ш						ш	-	Ш							Е		E	ш			-	-		Ш	Е		
MAX v							69		98	1					154		247							63		174	106						121	100		255
Rigid	(JIC)																																			
Flexible	(J						69		98						154		247							63		174	106						121	100		255
Rigid FI	f)																																-			
							18		25						59		102							36		117	45						72	67		145
ш 	L6 Vw									PP									P1									P1								
	5									5									L5									L5								
	4									L4									L4									L4								
	E									13									L3									L3								2.00
	7								8.25	12									12								14.50	7					10.00			1.83
	1						32.67		14.50	1					13.58		9.67		11					35.00		16.83	13.83	L					13.83	19.17		9.17
	Grid	∞		9	2	4	'n	2		Grid		U	Ľ	ш			8	A	Grid	8		9	5	4	3	2		Grid	т		L.	ш	۵	U		٩
S		× Hw	< Hw	× Hw	<pre>> Hw</pre>	< Hw	< Hw	< Hw	<pre>> Hw</pre>	E-W loads	< Hw	<pre>> Hw</pre>	<pre>> Hw</pre>	< Hw	<pre>> Hw</pre>	× Hw	<pre>> Hw</pre>	< Hw	N-S loads	× Hw	< Hw	<pre>> Hw</pre>	× Hw	< Hw	< Hw	<pre>> Hw</pre>	× Hw	E-W loads	< Hw	× Hw	× Hw	< Hw	<pre>> Hw</pre>	× Hw	< Hw	< Hw
HOLDOWNS	Roof	8.08	8.08	8.08	8.08	8.08	8.08	8.08	8.08		8.08	8.08	8.08	8.08	8.08	8.08	8.08	8.08	Roof-1	9.08	9.08	9.08	9.08	9.08	9.08	9.08	9.08		9.08	9.08	9.08	9.08	9.08	9.08	9.08	9.08

ELR Engineering 1915 Dayton Ave NE Renton, WA 98056 206.200.8764 elreng33@gmail.com

signer: ent: ject: Il Line:		015					Date:	3/5/2020	
ject:	ELR								
	MTT/PC, LLC							-	
l Line:	1572-AB								
	Upper story - G	Grid B - 9'-8"							
				L1(ft)	Lo1(ft)		L2(ft)		
			V (lb)	1		- -			
	<u>> 0.6W</u>	<u>> 0.7ρΕ</u>	\rightarrow					E 1	
lb) =	988	2387	_					habove(ft)	
	r 12.3.3.3?	Y						<u>-</u>	
-	h factor (Ωo) =	2.5						h _{open} (ft) wall(ft)	
	2.4.3.3 ASD							hopen() hwall(ft)	
	crease w/Ωo =	1.2						ے _ ^م	
5 =		1.053							
		1.3						m(ft	
								h _{below} (ft)	
					L _{wall} (ft)				
				Input	/ariables		•		
		V	/ 2387 lbf Seismic con	· · ·	Wall Pier As	pect Ratio	Adj. Factor		
		h _{wal}		ha1 1.42 f		1.41	N/A		
		L1		ho1 4.00 f	-	1.41	N/A		
		L2		hb1 2.67 f		1.41	N/A		
		L _{wal}		Lo1 4.01 f					
		∽ wal	J. 5.07 IL	4.011					
	1 Hold-down	forces: H = Vh _{wa}	/1	1995 lb	f 6. Unit shear bes	ide onening			
	1. Hold-down	iorees. II – vii _{wa}	.II/ ∽wali	199510			(V/L)(L1+T1)/L1 =	422 plf	
	2 Unit choor o	bove + below o	noning				(V/L)(T2+L2)/L2 =	422 plf 422 plf	
	2. 0111 311241 4		ening: va1 = vb1 = H/(ha1+hb	b1) = 489 pl	f		V1*L1+V2*L2=V?	2387 lbf	ок
		This ope		/1) - 405 pi		Check	VI LI:VZ LZ-V.	2307 151	ÖN
	3. Total bound	ary force above	e + below openings		7. Resistance to	corner forces	;		
		-	First opening: O1 = va1 x (Lo	o1) = 1960 lb			R1 = V1*L1 =	1193 lbf	
				,			R2 = V2*L2 =	1193 lbf	
	4. Corner force	25							
			F1 = O1(L1)/(L1+	L2) = 980 lb	f 8. Difference cor	ner force + re	esistance		
			F2 = O1(L2)/(L1+I)	L2) = 980 lb	f		R1-F1 =	214 lbf	
							R2-F2 =	214 lbf	
	5. Tributary le	ngth of opening			_				
			T1 = (L1*Lo1)/(L1+	,					
			T2 = (L2*Lo1)/(L1+1)	L2) = 2.01 f	t		c1 = (R1-F1)/L1 =		
						v	rc2 = (R2-F2)/L2 =	76 plf	
	V (Ib)					·····			
					<u>Holdowns (overt</u> Twind =	urning)	OJC ILL		
							826 lbf 3197 lbf		
				-	Tseismic = <u>Holdowns (Dead</u>	resisting)	213/ 101		
	e 1	e 2	r.	6 4	Uniform =	iesistiil <u>g)</u>	156 plf		
	Line 1	Line 2		Line 4	Conc. =		0 lbf		
				_					
					Twind (net) =		374 lbf	< (0.6D+0.6W)	
					Tseismic (net) =			< (0.6-0.14Sds)D+0.	7ΩοΕ/ο
									· / F
				1					
	1.55			H(Ib)					
	ни	,							
ck Summa	म्। Hary of Shear Valu		ning						
		es for One Ope	ning				308	1687	1995 ll
1: vc1(ha:	ary of Shear Valu	es for One Oper =H?	-			1995	308 308	1687 1687	1995 II 0

Design Summary									
Req. Sheathing Capacity	422 plf	< Seismic controls	W3						
Req. Strap Force	980 lbf	< Seismic controls	CS20	applied to one side of wall above and below window x	116.04	inches long			
Req. HD Force (net)	2119 lbf	< Seismic controls	MSTC48B3	< Input holdown here					

le:	AWC-SDPWS-2	2015							Date:	3/5/2020	
igner:	ELR										
nt:	MTT/PC, LLC										
ect:	1572-AB										
l Line:	Lower story -	Grid D - 10'-0									
						L1(ft)	Lo1 (ft)		L2(ft)		
				v	(ІЬ)_ 🕇		201(11)	•			
	<u>> 0.6W</u>	<u>> 0.7pE</u>			>					£	1
lb) =	717	1209								habove(ft)	
	r 12.3.3.3?	N				-				X	
-	h factor (Ωo) =	N.A.								£	
	2.4.3.3 ASD	NI 4								h _{open} (ft) h _{wall} (ft)	
stress in s =	icrease w/Ωo =	N.A. 1.053									
:		1.055								_ _1	
		1.5								h _{below} (ft)	
										P [®]	
										+	÷
							L _{wall} (ft)				
						Input Va	riables				
			V	1209 lbf Seis	smic controls	opening 1	Wall F	ier Aspect Ratio	Adj. Factor	_	
			h _{wall}	9.08 ft	ha	1 1.25 ft	P1=ho1	/L1= 1.33	N/A		
			L1	3.00 ft	ho	1 4.00 ft	P2=ho1	/L2= 1.00	N/A		
			L2	4.00 ft	hb	1 3.83 ft					
			L _{wall}	10.00 ft	Lo	1 3.00 ft					
	1. Hold-down	forces: H = V	h _{wall} /L _{wall}			1098 lbf	6. Unit she	ar beside opening			
										170 10	-
								V1 =	(V/L)(L1+T1)/L1 =	173 plf	
	2. Unit shear	above + belo	w openin	g					(V/L)(L1+T1)/L1 = (V/L)(T2+L2)/L2 =		
	2. Unit shear			<u>g</u> va1 = vb1 = H/(l	ha1+hb1)	= 216 plf		V2 =		173 plf	
		First	opening:	va1 = vb1 = H/(I	ha1+hb1)	= 216 plf		V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V?	173 plf	
	2. Unit shear a	First	opening: ove + bel	va1 = vb1 = H/(l			7. Resistar	V2 =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V?	173 plf 1209 lbf	ок
		First	opening: ove + bel	va1 = vb1 = H/(I			7. Resistar	V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 =	173 plf 1209 lbf 518 lbf	ок -
	3. Total bound	First dary force ab	opening: ove + bel	va1 = vb1 = H/(l			7. Resistar	V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V?	173 plf 1209 lbf 518 lbf	ок -
		First dary force ab	opening: ove + bel	va1 = vb1 = H/(l ow openings opening: O1 = va	a1 x (Lo1)	= 648 lbf		V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 =	173 plf 1209 lbf 518 lbf	ок -
	3. Total bound	First dary force ab	opening: ove + bel	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1	a1 x (Lo1) L)/(L1+L2)	= 648 lbf = 278 lbf		V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance	173 plf 1209 lbf 518 lbf 691 lbf	ок -
	3. Total bound	First dary force ab	opening: ove + bel	va1 = vb1 = H/(l ow openings opening: O1 = va	a1 x (Lo1) L)/(L1+L2)	= 648 lbf = 278 lbf		V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 =	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf	ок
	3. Total bound	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1	a1 x (Lo1) L)/(L1+L2)	= 648 lbf = 278 lbf		V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf	ок
	3. Total bound	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2	a1 x (Lo1) L)/(L1+L2) 2)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf	8. Differen	V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 =	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf	ок
	3. Total bound	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) L)/(L1+L2) 2)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft	8. Differen	V2 = Check ce to corner forces ce corner force + r	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 =	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2	a1 x (Lo1) L)/(L1+L2) 2)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft	8. Differen	V2 = Check <u>ice to corner forces</u> <u>ce corner force + r</u> <u>tar in corner zones</u>	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? S R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 =	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) L)/(L1+L2) 2)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft	8. Differen	V2 = Check <u>ice to corner forces</u> <u>ce corner force + r</u> <u>tar in corner zones</u>	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 =	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) L)/(L1+L2) 2)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft	<u>8. Differen</u> 9. Unit she <u>Holdowns</u>	V2 = Check <u>ice to corner forces</u> <u>ce corner force + r</u> <u>tar in corner zones</u>	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 =	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) L)/(L1+L2) 2)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft	<u>8. Differen</u> <u>9. Unit she</u> <u>Holdowns</u> Twind =	V2 = Check ice to corner forces ce corner force + r ar in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 652 lbf	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) L)/(L1+L2) 2)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft	<u>8. Differen</u> <u>9. Unit she</u> <u>Holdowns</u> Twind = Tseismic =	V2 = Check ce to corner forces ce corner force + r ar in corner zones v (overturning)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 =	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	<mark>8. Differen</mark> 9. Unit she <u>Holdowns</u> Twind = Tseismic = <u>Holdowns</u>	V2 = Check ice to corner forces ce corner force + r ar in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? S R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) L)/(L1+L2) 2)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft	8. Differen 9. Unit she Holdowns Twind = Tseismic = Holdowns Uniform =	V2 = Check ce to corner forces ce corner force + r ar in corner zones v (overturning)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? S R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	<mark>8. Differen</mark> 9. Unit she <u>Holdowns</u> Twind = Tseismic = <u>Holdowns</u>	V2 = Check ce to corner forces ce corner force + r ar in corner zones v (overturning)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? S R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	8. Differen 9. Unit she Holdowns Twind = Tseismic = Holdowns Uniform = Conc. =	V2 = Check ce to corner forces ce corner force + r tar in corner zones (overturning) (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf 0 lbf	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf 80 plf	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	<u>8. Differen</u> <u>9. Unit she</u> <u>Holdowns</u> Twind = Tseismic = <u>Holdowns</u> Uniform = Conc. = Twind (net	V2 = Check ce to corner forces ce corner force + r tar in corner zones (overturning) (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf 0 lbf -349 lbf	 173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf 321 lbf 80 plf 80 plf 	OK
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	8. Differen 9. Unit she Holdowns Twind = Tseismic = Holdowns Uniform = Conc. =	V2 = Check ce to corner forces ce corner force + r tar in corner zones (overturning) (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf 0 lbf	173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf 80 plf	OK
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	<u>8. Differen</u> <u>9. Unit she</u> <u>Holdowns</u> Twind = Tseismic = <u>Holdowns</u> Uniform = Conc. = Twind (net	V2 = Check ce to corner forces ce corner force + r tar in corner zones (overturning) (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf 0 lbf -349 lbf	 173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf 321 lbf 80 plf 80 plf 	OK
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	<u>8. Differen</u> <u>9. Unit she</u> <u>Holdowns</u> Twind = Tseismic = <u>Holdowns</u> Uniform = Conc. = Twind (net	V2 = Check ce to corner forces ce corner force + r tar in corner zones (overturning) (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf 0 lbf -349 lbf	 173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf 321 lbf 80 plf 80 plf 	ок
ck Summa	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab ength of oper	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	<u>8. Differen</u> <u>9. Unit she</u> <u>Holdowns</u> Twind = Tseismic = <u>Holdowns</u> Uniform = Conc. = Twind (net	V2 = Check ce to corner forces ce corner force + r tar in corner zones (overturning) (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf 0 lbf -349 lbf	 173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf 321 lbf 80 plf 80 plf 	ок
	3. Total bound 4. Corner forc 5. Tributary le	First dary force ab ength of oper ength of oper ength of oper	opening: ove + bel First c	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	<u>8. Differen</u> <u>9. Unit she</u> <u>Holdowns</u> Twind = Tseismic = <u>Holdowns</u> Uniform = Conc. = Twind (net	V2 = Check ce to corner forces ce corner force + r tar in corner zones (overturning) (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf 0 lbf -349 lbf	 173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf 321 lbf 80 plf 80 plf 	OK
1: vc1(ha 2: va1(ha	3. Total bound 4. Corner forc 5. Tributary le V (Ib) U (I	First dary force ab es ength of oper b) ues for One C =H? +hb1)-V1(ho1	opening: ove + bel First c ings	va1 = vb1 = H/(l ow openings opening: O1 = va F1 = O1(L1 F2 = O1(L2 T1 = (L1*L01	a1 x (Lo1) 1)/(L1+L2) 2)/(L1+L2) 1)/(L1+L2) 1)/(L1+L2)	= 648 lbf = 278 lbf = 370 lbf = 1.29 ft = 1.71 ft	<u>8. Differen</u> <u>9. Unit she</u> <u>Holdowns</u> Twind = Tseismic = <u>Holdowns</u> Uniform = Conc. = Twind (net	V2 = Check ce to corner forces ce corner force + r tar in corner zones (overturning) (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? S R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = rc1 = (R1-F1)/L1 = rc2 = (R2-F2)/L2 = 652 lbf 1098 lbf 334 plf 0 lbf -349 lbf 343 lbf	 173 plf 1209 lbf 518 lbf 691 lbf 240 lbf 321 lbf 321 lbf 80 plf 80 plf (0.6D+0.6W) < (0.6-0.145ds)D+0 	ОК - - - 1.7рЕ

(
Req. Sheathing Capacity	173 plf	< Seismic controls	W6						
Req. Strap Force	370 lbf	< Seismic controls	CS22	applied to one side of wall above and below window x	120	inches long			
Req. HD Force (net)	343 lbf	< Seismic controls	NONE	< Input holdown here					

e:	AWC-SDPWS-2	2015							Date	: 3/5/2020		
gner:	ELR											
nt:	MTT/PC, LLC											
ect:	1572-AB											
Line:	Upper story -	Grid D - 13'-7'	I									
				× ((ІЬ)_ [L1(ft)	Lo1 (ft)	• •	L2(ft)			
	<u>> 0.6W</u>	<u>> 0.7pE</u>								ΞŤ	1	
b) =	800	2090								h _{above} (ft)		
oly Ωo pe	er 12.3.3.3?	N										
-	h factor (Ωo) =	N.A.								æ		
	2.4.3.3 ASD									h _{open} (ft)	h _{wall} (ft)	
	ncrease w/Ωo =	N.A.								ے ا	h	
=		1.053										
		1.3								"(Ľ		
										h _{below} (ft)		
										_		
							L _{wall} (ft)					
					4	Input Vari		·	•			
			V	2090 lbf Seism	nic controls	Opening 1		ll Pier Aspect Ratio	Adj. Factor			
			N _{wall}	8.08 ft	ha1			o1/L1= 1.17	-	_		
		1	'wall L1	3.42 ft	ho1			o1/L1= 1.17 o1/L2= 0.49	N/A N/A			
			L1 L2	8.17 ft	hb1		PZ=1	01/LZ= 0.49	N/A			
				13.58 ft	Lo1							
			wall	13.56 11	LUI	1.99 11						
	1. Hold-down	foress: 11 - 14	- //			1244 165	C 11-11					
	1. Hold-down	Torces: H = V	wall			1244 lbf	6. Unit	shear beside opening	(V/L)(L1+T1)/L1 =		0 plf	
											() nlt	
	2. Unit also an										•	
	2. Unit shear a			1 - yb1 - 11//b		205 plf		V2 =	(V/L)(T2+L2)/L2 =	: 18	0 plf	
	2. Unit shear a			1 = vb1 = H/(h	ia1+hb1) =	= 305 plf		V2 =		: 18	•	
		First o	opening: va		ia1+hb1) =	- 305 plf	7 Resis	V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V?	: 18	0 plf	
	2. Unit shear a	First o	opening: va	v openings			7. Resis	V2 =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? s	: 18 209	0 plf 0 lbf OK	
		First o	opening: va				7. Resis	V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V?	: 18 209 : 61	0 plf	
		First o	opening: va	v openings			<u>7. Resis</u>	V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? S R1 = V1*L1 =	: 18 209 : 61	0 plf 0 lbf OK 7 lbf	
	3. Total bound	First o	opening: va	v openings	1 x (Lo1) =	= 606 lbf		V2 = Check	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 =	: 18 209 : 61	0 plf 0 lbf OK 7 lbf	
	3. Total bound	First o	opening: va	v openings ening: O1 = va2	1 x (Lo1) = //(L1+L2) =	606 lbf		V2 = Check tance to corner force:	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V? R1 = V1*L1 = R2 = V2*L2 =	= 18 209 = 61 = 147	0 plf 0 lbf OK 7 lbf	
	3. Total bound	First o	opening: va	v openings ening: O1 = va: F1 = O1(L1),	1 x (Lo1) = //(L1+L2) =	606 lbf		V2 = Check tance to corner force:	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 S R1 = V1*L1 = R2 = V2*L2 = esistance	 18 209 61 147 43 	0 plf 0 lbf OK 7 lbf 3 lbf	
	3. Total bound	First o dary force abo es	opening: va ove + below First ope	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf		V2 = Check tance to corner force:	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 S R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 =	 18 209 61 147 43 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf	
	3. Total bound	First o dary force abo es	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf	8. Diffe	V2 = Check tance to corner force: rence corner force + r shear in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 S R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 =	 18 209 61 147 43 104 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf	
	3. Total bound	First o dary force abo es	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf	8. Diffe	V2 = Check tance to corner force: rence corner force + r shear in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 s R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 =	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf	
	3. Total bound	First o dary force abo es	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf	8. Diffe	V2 = Check tance to corner force: rence corner force + r shear in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 S R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 =	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf	
	3. Total bound 4. Corner forc 5. Tributary le	First o dary force abo es	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf	<u>8. Diffe</u> 9. Unit :	V2 = Check tance to corner force rence corner force + r shear in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 s R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 =	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf	
	3. Total bound	First o dary force abo es	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf	<u>8. Diffe</u> 9. Unit : Holdow	V2 = Check tance to corner force rence corner force + r shear in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 =	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First o dary force abo es	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind =	V2 = Check tance to corner force rence corner force + r shear in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V3 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First o dary force abo es	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi	V2 = Check tance to corner force rence corner force + r shear in corner zones	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 =	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First of dary force above es ength of open	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf 0.59 ft 1.40 ft	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u>	V2 = Check tance to corner force: rence corner force + r shear in corner zones ns (overturning) c = ns (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First o dary force abo es	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf	<u>8. Diffe</u> <u>9. Unit</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniforn	V2 = Check tance to corner force: rence corner force + r shear in corner zones ns (overturning) c = ns (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 s R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First of dary force above es ength of open	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf 0.59 ft 1.40 ft	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u>	V2 = Check tance to corner force: rence corner force + r shear in corner zones ns (overturning) c = ns (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First of dary force above es ength of open	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf 0.59 ft 1.40 ft	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniform Conc. =	V2 = Check tance to corner force: rence corner force + r shear in corner zones ns (overturning) C = ns (Dead resisting)	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 s R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf	 18 209 61 147 43 104 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First of dary force above es ength of open	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf 0.59 ft 1.40 ft	<u>8. Diffe</u> <u>9. Unit</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniforn	V2 = Check tance to corner force: rence corner force + r shear in corner zones () ns (overturning) c = ns (Dead resisting) 1 = net) =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf 0 lbf	: 18 209 : 61 : 147 : 147 : 104 : 12 : 12	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First of dary force above es ength of open	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf 0.59 ft 1.40 ft	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniform Conc. = Twind (V2 = Check tance to corner force: rence corner force + r shear in corner zones () ns (overturning) c = ns (Dead resisting) 1 = net) =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf 0 lbf -159 lbf	 18 209 61 147 43 104 12 12 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First of dary force abo es ength of open	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniform Conc. = Twind (V2 = Check tance to corner force: rence corner force + r shear in corner zones () ns (overturning) c = ns (Dead resisting) 1 = net) =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf 0 lbf -159 lbf	 18 209 61 147 43 104 12 12 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf 8 plf	
	3. Total bound 4. Corner forc 5. Tributary le	First of dary force abo es ength of open	opening: va ove + below First ope ings	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf 179 lbf 427 lbf 0.59 ft 1.40 ft	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniform Conc. = Twind (V2 = Check tance to corner force: rence corner force + r shear in corner zones () ns (overturning) c = ns (Dead resisting) 1 = net) =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf 0 lbf -159 lbf	 18 209 61 147 43 104 12 12 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf 8 plf	
<u>k Sum</u> ma	3. Total bound 4. Corner forc 5. Tributary le	First of dary force abo es ength of open	opening: vai	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniform Conc. = Twind (V2 = Check tance to corner force: rence corner force + r shear in corner zones () ns (overturning) c = ns (Dead resisting) 1 = net) =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf 0 lbf -159 lbf	 18 209 61 147 43 104 12 12 12 	0 plf 0 lbf OK 7 lbf 3 lbf 8 lbf 6 lbf 8 plf 8 plf	
1: vc1(ha	3. Total bound 4. Corner forc 5. Tributary le V (Ib) U (Ib) H(I ary of Shear Valu 1+hb1)+V1(ho1)	First of dary force above es ength of open b) ues for One O =H?	ppening: vai	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniform Conc. = Twind (V2 = Check tance to corner force: rence corner force + r shear in corner zones () ns (overturning) c = ns (Dead resisting) 1 = net) =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf 0 lbf -159 lbf	 18 209 61 147 43 104 12 12 12 	0 plf 0 lbf OK 7 lbf 3 lbf 6 lbf 8 plf 8 plf 8 plf	244
1: vc1(ha 2: va1(ha	3. Total bound 4. Corner forc 5. Tributary le V (Ib) U (I	First of dary force above es ength of open ength of open ength of open b) b) ues for One O =H? +hb1)-V1(ho1	ppening: vai	v openings ening: O1 = va: F1 = O1(L1), F2 = O1(L2), T1 = (L1*LO1),	1 x (Lo1) = //(L1+L2) = //(L1+L2) = //(L1+L2) = //(L1+L2) =	606 lbf	<u>8. Diffe</u> <u>9. Unit :</u> <u>Holdow</u> Twind = Tseismi <u>Holdow</u> Uniform Conc. = Twind (V2 = Check tance to corner force: rence corner force + r shear in corner zones () ns (overturning) c = ns (Dead resisting) 1 = net) =	(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V7 R1 = V1*L1 = R2 = V2*L2 = esistance R1-F1 = R2-F2 = vc1 = (R1-F1)/L1 = vc2 = (R2-F2)/L2 = 476 lbf 1244 lbf 156 plf 0 lbf -159 lbf 765 lbf	 18 209 61 147 43 104 104 12 12 12 (0.6D+0.6W < (0.6-0.14Sd 	0 plf 0 lbf OK 7 lbf 3 lbf 6 lbf 8 plf 8 plf 8 plf	244 II 0

Req. Sheathing Capacity	180 plf	< Seismic controls	W6						
Req. Strap Force	427 lbf	< Seismic controls	CS22	applied to one side of wall above and below window x	162.96	inches long			
Req. HD Force (net)	765 lbf	< Seismic controls	NONE	< Input holdown here					

: /	AWC-SDPWS-20)15				Date:	3/5/2020	
	ELR	-					-,-, -	
	MTT/PC, LLC							
	1572-AB							
	Lower story - G	rid A - 9'-2"						
			V (Ib)	L1(ft)	Lo1(ft)	L2(ft)		
_	<u>>0.6W</u>	<u>> 0.7pE</u>						
) =	1333	2342					habove(ft)	
ly Ωo per 1		Ν					<u>- </u> *	
-	actor (Ωo) =	N.A.					æ	
E 7-10 12.4							h _{open} (ft) h _{wall} (ft)	
	ease w/Ωo =	N.A.					r r	
=		1.053						
		1.3					h _{below} (ft)	
							P Pelo	
							↓ ↓	
					L _{wall} (ft)			
			L4	Input Varial				
		V	2342 lbf Seismic controls		Wall Pier Aspect Ratio	Adj. Factor		
		v h _{wal}			P1=h01/L1= 1.94	N/A	_	
		''wal L1			P2=h01/L2= 1.94	N/A N/A		
		L1 L2			PZ-1101/LZ- 1.94	N/A		
		L _{wal}	9.17 10	4.01 11				
	1 Hold down f	orces: H = Vh _{wa}	4	2320 lbf	C. Unit shear basida ananing			
	L. Hold-down in	Drees: $H = VH_{wa}$	ll/ L _{wall}	2320 IDT	6. Unit shear beside opening		45.4.15	
) Unit choor of	ove + below o	noning			(V/L)(L1+T1)/L1 =		
<u>-</u>	z. Unit shear at		pening ning: va1 = vb1 = H/(ha1+hb1) =	= 568 plf		(V/L)(T2+L2)/L2 = V1*L1+V2*L2=V?		ov
		First ope		- 508 pii	Clieck	VI LITVZ LZ-V:	2342 101	UK
	3 Total bounda	ry force above	+ below openings		7. Resistance to corner force			
-			First opening: O1 = va1 x (Lo1) =	= 2278 lbf	Thesistance to comerioree	R1 = V1*L1 =	1171 lbf	
				2270101		R2 = V2*L2 =		
4	4. Corner force	5						
-			F1 = O1(L1)/(L1+L2) =	= 1139 lbf	8. Difference corner force + r	esistance		
			F2 = O1(L2)/(L1+L2) =	= 1139 lbf		R1-F1 =	32 lbf	
						R2-F2 =	32 lbf	
<u>!</u>	5. Tributary len	gth of opening	s					
			T1 = (L1*Lo1)/(L1+L2) =	= 2.01 ft	9. Unit shear in corner zones			
			T2 = (L2*Lo1)/(L1+L2) =	= 2.01 ft		/c1 = (R1-F1)/L1 =	12 plf	
					,	/c2 = (R2-F2)/L2 =	12 plf	
	V (Ib)							
					Holdowns (overturning)	1000 11 (
					Twind =	1320 lbf		
					Tseismic =	2320 lbf		
	61	e 2	m	4	<u>Holdowns (Dead resisting)</u> Uniform =	123 plf	1	
	Line 1	Line 2	Line 3	Line 4	Conc. =	0 lbf	-	
					conc. –		1	
					Twind (net) =	981 lbf	< (0.6D+0.6W)	
					Tseismic (net) =	2064 lbf	< (0.6-0.14Sds)D+0.2	7ρΕ
								•
	H(IP			H(lb)				
<pre>summary</pre>	of Shear Value	s for One Oper	ning					
	hb1)+V1(ho1)=		-			50	2270	2320 l
		nb1)-V1(ho1)=0	?		2320	50	2270	0
						50	2270	22201
8: vc2(ha1+	hb1)+V2(ho1)=	H?				50	2270	2320 l

				e ,		
Req. Sheathing Capacity	454 plf	< Seismic controls	W3			
Req. Strap Force	1139 lbf	< Seismic controls	CS18	applied to one side of wall above and below window x	110.04	inches long
Req. HD Force (net)	2064 lbf	< Seismic controls	STHD14RJ	< Input holdown here		

e:	AWC-SDPWS-2	015					Date:	3/5/2020	
gner:	ELR								
nt:	MTT/PC, LLC								
ect:	1572-AB								
Line:	Lower story - G	rid D - 13'-10"							
				L1 (ft)	L = 1 / f+)		L2(ft)		
			V (lb)		▲ Lo1 (ft)				
	<u>> 0.6W</u>	<u>> 0.7ρE</u>						≘î î	
b) =	992	1672						habove(ft)	
oly Ωo per :		N						<u>-</u> *	
-	factor (Ωo) =	N.A.						(F)	
CE 7-10 12.								h _{open} (ft) h _{wall} (ft)	
	rease w/Ωo =	N.A.						Ĕ Ĕ	
=		1.053							
		1.3						h _{below} (ft)	
								Pelo	
					L _{wall} (ft)				
			Let Let	Input \	ariables		•		
		V	1672 lbf Seismic contro			Aspect Ratio	Adj. Factor		
		v h _{wall}		a1 1.25 ft	1		N/A		
							-		
		L1 L2				= 2.07	0.9917		
		L _{wall}	13.83 ft Lo	o1 7.99 ft	1				
			h	1000 11					
	1. Hold-down f	orces: H = Vh _{wal}	I/L _{wall}	1098 lbf	6. Unit shear b	beside opening			
							(V/L)(L1+T1)/L1 =		
	2. Unit shear a						(V/L)(T2+L2)/L2 =	286 plf	
		First ope	ning: va1 = vb1 = H/(ha1+hb1)) = 269 plf		Check	V1*L1+V2*L2=V?	1672 lbf	ОК
	2 Total haved	an fares shave	+ below openings		7 Desistance	***			
	5. Total bound		First opening: O1 = va1 x (Lo1)) = 2149 lbf		to corner forces	R1 = V1*L1 =	979 lbf	
			First opening. Of – val x (LOI)	/- 2149101			R1 = V1 L1 = R2 = V2*L2 =		
	4. Corner force	c					NZ - VZ LZ -	093101	
	4. comeriorce	3	F1 = O1(L1)/(L1+L2)) = 1258 lbf	8 Difference (corner force + r	esistance		
			F2 = O1(L2)/(L1+L2)			comer force i h	R1-F1 =	-279 lbf	
				001101			R2-F2 =	-198 lbf	
	5. Tributary ler	gth of opening	5						
		0 1 0	T1 = (L1*L01)/(L1+L2)) = 4.68 ft	9. Unit shear i	in corner zones			
			T2 = (L2*Lo1)/(L1+L2)				c1 = (R1-F1)/L1 =	-82 plf	
			, ,,, ,				rc2 = (R2-F2)/L2 =		
	V (Ib)				Holdowns (ove	erturning)			
					Twind =		652 lbf		
					Tseismic =		1098 lbf		
		2			Holdowns (Dea	ad resisting)		1	
	Line 1	Line 2	Line 3	Line 4	Uniform =		334 plf		
	-	_	-		Conc. =		0 lbf		
					Twind (net) =			< (0.6D+0.6W)	
					Tseismic (net)	=	54 lbf	< (0.6-0.14Sds)D+0.	7ρΕ
	H(Ib	•)		H(Ib)					
			•						
	ry of Shear Valu	es for One Oper	ling					4.400	4000
							-333	1432	1098 ll
1: vc1(ha1	+hb1)+V1(ho1)=		2			4000		4 4 5 5	
1: vc1(ha1 2: va1(ha1		hb1)-V1(ho1)=0	?			1098	-333 -333	1432 1432	0 1098 II

Design Summary									
Req. Sheathing Capacity	289 plf	< Seismic controls	W4						
Req. Strap Force	1258 lbf	< Seismic controls	CS18	applied to one side of wall above and below window x	165.96	inches long			
Req. HD Force (net)	54 lbf	< Seismic controls	NONE	< Input holdown here					