

civil & structural engineering & planning


T - Mobile -

STRUCTURAL ANALYSIS REPORT

SE06033A – Burke

Water Tank Site

6563 Sunset Ave NE Bremerton, WA 98310

250 4th Ave S Ste 200 Edmonds, WA 98020 Phone: (425) 778-8500 Fax: (425) 778-5536

CG Project No.: 20070.667

TABLE OF CONTENTS

SECTION TITLE / DESCRIPTION	PAGE NO.
STRUCTURAL ANALYSIS NARRATIVE	1-3
SITE PLAN	4
SITE DATA	5-9
LATERAL LOAD CALCULATIONS	10-11
APPURTENANCE & MAIN STRUCTURE ANALYSIS	12-22
EQUIPMENT CABINET ANCHORAGE	23-24
ARCHITECTURAL DRAWINGS (EXCERPT)	A1-A7

INTRODUCTION

CG Engineering was retained by B.J. Thomas, PE (Client) to provide structural analysis of the existing structure for the site modifications proposed by T-Mobile.

The structural analysis completed by CG Engineering was inclusive of the structural elements that were affected by the addition of equipment and antennas associated with the proposed T-Mobile site modifications. Where applicable, this includes the antenna and equipment support structure and affected portions of the existing main structure.

SITE DESCRIPTION

The appurtenances are mounted to an existing steel antenna braced frame located on the top of a cylindrical, 90' tall steel water tank. The existing steel braced frame is anchored to the roof with (6) 1/2'' threaded rods, (2) per sector, and (3) L3x3x1/4 steel angle kicker braces, (1) per sector.

The Client provided us with structural calculations for a previous antenna upgrade dated 07/18/19. CG Engineering also had access to structural calculations for previous antenna upgrades by CG Engineering dated 06/23/2015 and by Cornerstone Engineering dated 10/17/12. Photos of the site and architectural plans were also provided for the proposed revisions. All geometry, member sizes, and material strengths used in our analysis were based on this information. If anything differs from the information contained in these documents, CG Engineering should be notified to revise our analysis.

APPURTENANCE CONFIGURATION

The structure was analyzed using the appurtenance configuration specified in the following table. All loading was provided to us from the Client. This table includes all known existing and future antennas for this site.

Sector	Existing Appurtenance Configuration	Proposed Appurtenance Configuration (Bold=New)	Mount Type
A	 (2) Commscope Panel Antennas Model No. TMBXX-6516-R2M (1) Commscope Panel Antenna Model No. FFHH-65C-R3 (1) AHLOA (1) COVP (1) AHFIB (1) FXFB (2) DUAL PCS/AWS TMA 	 (1) Commscope Panel Antennas Model No. TMBXX-6516-R2M (1) Commscope Panel Antenna Model No. FFHH-65C-R3 (1) Nokia Radio Antenna Model No. AEHC (1) AHLOA (1) COVP (1) AHFIG (1) FXFB (1) FRIA 	Mount appurtenances to existing 2-1/2" pipe mounts
В	 (2) Commscope Panel Antennas Model No. TMBXX-6516-R2M (1) Commscope Panel Antenna Model No. FFHH-65C-R3 (1) AHLOA (1) COVP (1) AHFIB (1) FXFB (2) DUAL PCS/AWS TMA 	 (1) Commscope Panel Antennas Model No. TMBXX-6516-R2M (1) Commscope Panel Antenna Model No. FFHH-65C-R3 (1) Nokia Radio Antenna Model No. AEHC (1) AHLOA (1) AHFIG (1) FXFB (1) FRIA (2) HCS 2.0 Pendants 	Mount appurtenances to existing 2-1/2" pipe mounts

Table continued on following page...

table	continued	from	previous	page.

 (2) Commscope Panel Antennas Model No. TMBXX-6516-R2M (1) Commscope Panel Antenna Model No. FFHH-65C-R3 G (1) AHLOA (1) COVP (1) AHFIB (1) FXFB (2) DUAL PCS/AWS TMA 	 (1) Commscope Panel Antennas Model No. TMBXX-6516-R2M (1) Commscope Panel Antenna Model No. FFHH-65C-R3 (1) Nokia Radio Antenna Model No. AEHC (1) AHLOA (1) AHFIG (1) FXFB (1) FRIA 	Mount appurtenances to existing 2-1/2" pipe mounts
--	--	---

The coax cables that serve the antennas weigh less than 5 lb/ft and are therefore exempt from the requirements of Chapter 13 of ASCE 7.

LEASE AREA EQUIPMENT

All loading for the equipment was provided to us from the client. The client is proposing the following modifications at the equipment cabinets: remove (1) Purcell cabinet, add (1) HPL3 600A Support Cabinet, and add (1) LB3 Battery Cabinet.

ANALYSIS CRITERIA

The parameters in the following table were used in our analysis of the structure based on its location.

City of Seattle, WA						
Wind Criteria Seismic Criteria						
Basic Wind Speed w/o Ice (3-s Gust):	110 mph	Risk Category:	IV	Sds:	0.975	
Exposure: B Kzt (ASCE 7-10): 1.30 Sd1: 0.579						
Notes: 1. Refer to the attached topographic maps used to determine the topographic factor.						
2. Parameters based on the 2012	2. Parameters based on the 2012 International Building Code (IBC) and referenced standards.					

APPURTENANCE MOUNT/MAIN STRUCTURE ANALYSIS RESULTS

Individual appurtenance mounts have been determined to be sufficient to support the proposed loads. Additionally, the existing structure has been determined to be sufficient to support the proposed appurtenance configuration.

CONCLUSIONS/RECOMMENDATIONS

We have determined that no upgrades to the existing structure are required for the proposed T-Mobile installation as described above in the appurtenance configuration tables.

• Appurtenance Anchorage:

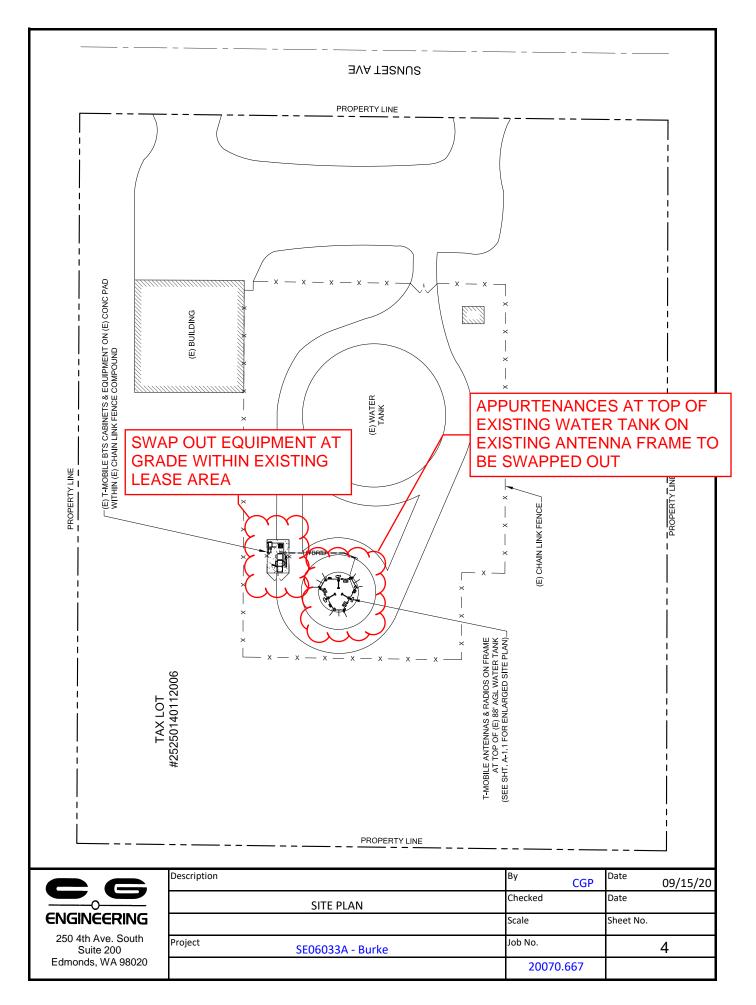
The appurtenances shall attach to the existing 2-1/2" standard pipe mounts on the existing steel braced frame. Attach the appurtenances to the pipe mounts with the mounting hardware provided by the manufacturer and in accordance with their installation instructions.

250 4th Avenue South, Suite 200 Edmonds, WA 98020 ph. 425.778.8500 | f. 425.778.5536 www.cgengineering.com

CONDITIONS OF ANALYSIS

This structural analysis is based on the documentation that was available to us. CG Engineering did not perform an observation of this site to verify the accuracy of the provided structure and appurtenance data, and we should be contacted immediately if there are any discrepancies with the information stated within this report.

Our analysis is based on the assumption that the structure has been properly installed and is maintained to the minimum standards required by code. We assume the structure has no known deterioration or damage that would adversely affect its capacity.


REFERENCE DOCUMENTS

The following documents were provided to us by the Client for our analysis:

- 1. "<u>STRUCTURAL ANALYSIS REPORT SE06033A Burke</u>", by CG Engineering, dated 07/18/2019
- 2. "SEO6033A Burke Structural Calculations" by Cornerstone Engineering, dated 10/17/2012
- 3. "<u>Structural Calculations for Burke Water Tank SE6033A</u>" by EISI Ltd., dated 10/23/1998

250 4th Avenue South, Suite 200 Edmonds, WA 98020 ph. 425.778.8500 | f. 425.778.5536 www.cgengineering.com

9/14/2020

ATC Hazards by Location

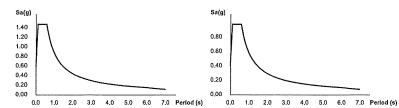
 Coordinates:
 47.622706, -122.608525

 Elevation:
 402 ft

 Timestamp:
 2020-09-14721:45:19.7162

 Hazard Type:
 Seismic

 Reference Document:
 ASCE7-10


 Risk Category:
 IV

 Site Class:
 D

ATC Hazards by Location

MCER Horizontal Response Spectrum

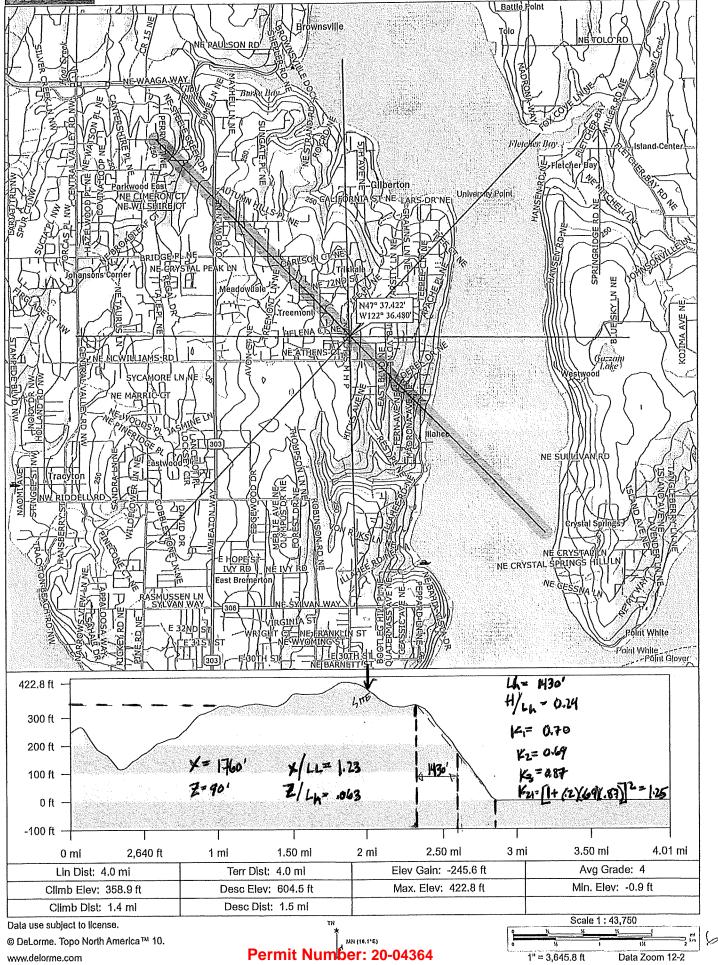
Design Horizontal Response Spectrum

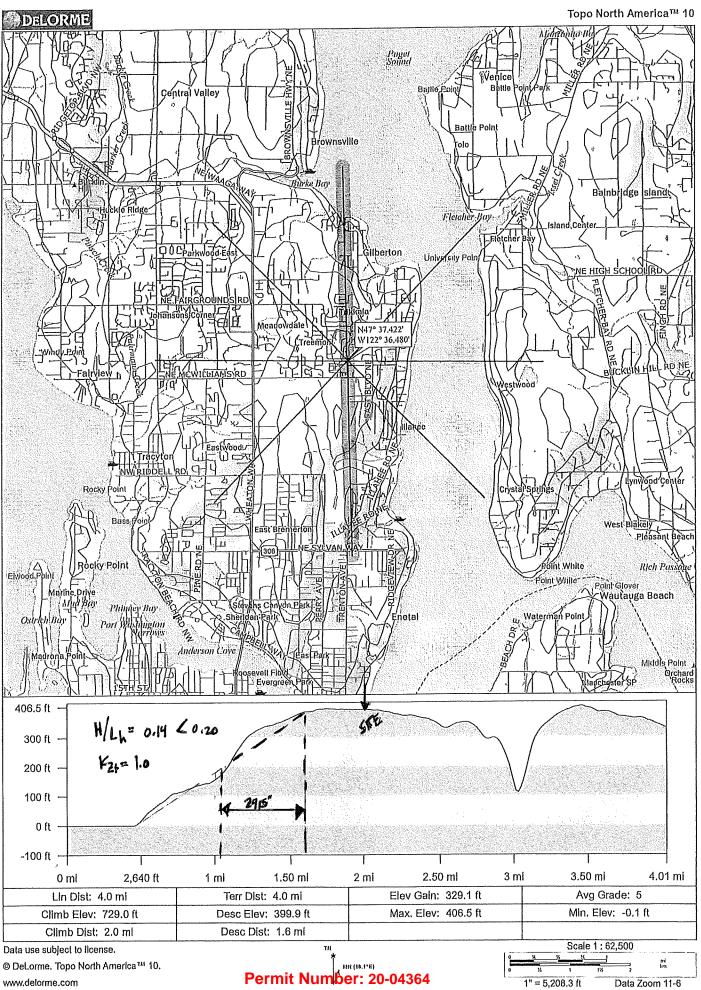
Basic Parameters

Name	Value	Description
SS	1.465	MCE _R ground motion (period=0.2s)
S ₁	0.58	MCE _R ground motion (period=1.0s)
S _{MS}	1.465	Site-modified spectral acceleration value
SMI	0.87	Site-modified spectral acceleration value
S _{DS}	0.977	Numeric seismic design value at 0.2s SA
S _{D1}	0.58	Numeric seismic design value at 1.0s SA

◄Additional Information

Name	Value	Description
Mante	Value	Description
SDC	D	Seismic design category
Fa	1	Site amplification factor at 0.2s
Fv	1.5	Site amplification factor at 1.0s
CRS	0.961	Coefficient of risk (0.2s)
CRt	0.932	Coefficient of risk (1.0s)
PGA	0.608	MCE _G peak ground acceleration
FPGA	1	Site amplification factor at PGA
PGAM	0.608	Site modified peak ground acceleration
τ _L	6	Long-period transition period (s)
SsRT	1.465	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1,524	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.961	Factored deterministic acceleration value (0.2s)
S1RT	0.58	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.622	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.238	Factored deterministic acceleration value (1.0s)
PGAd	1,138	Factored deterministic acceleration value (PGA)

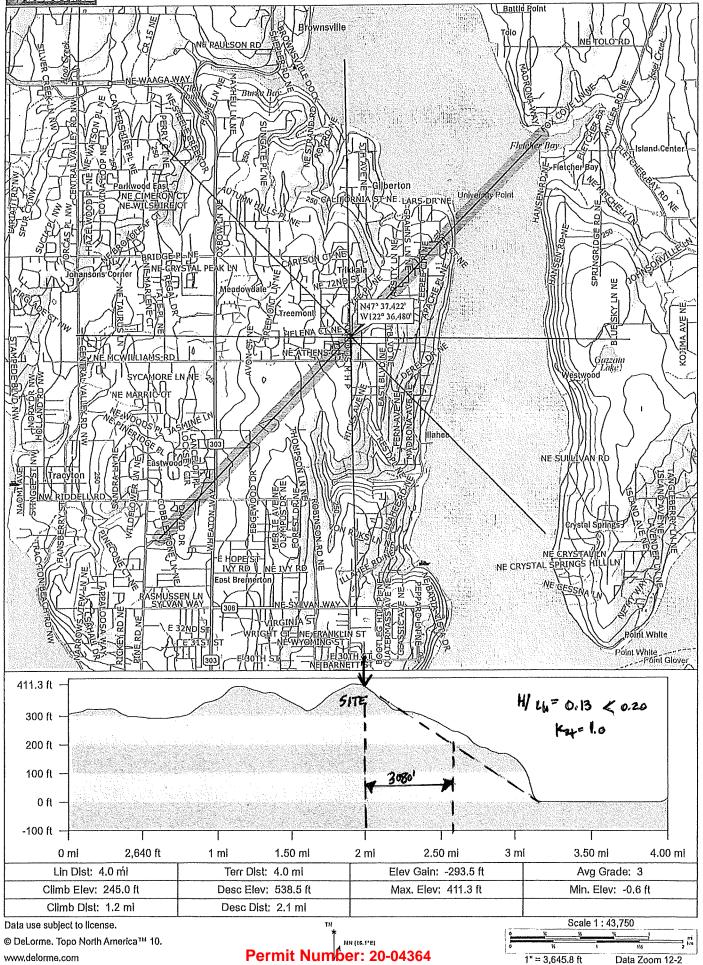

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

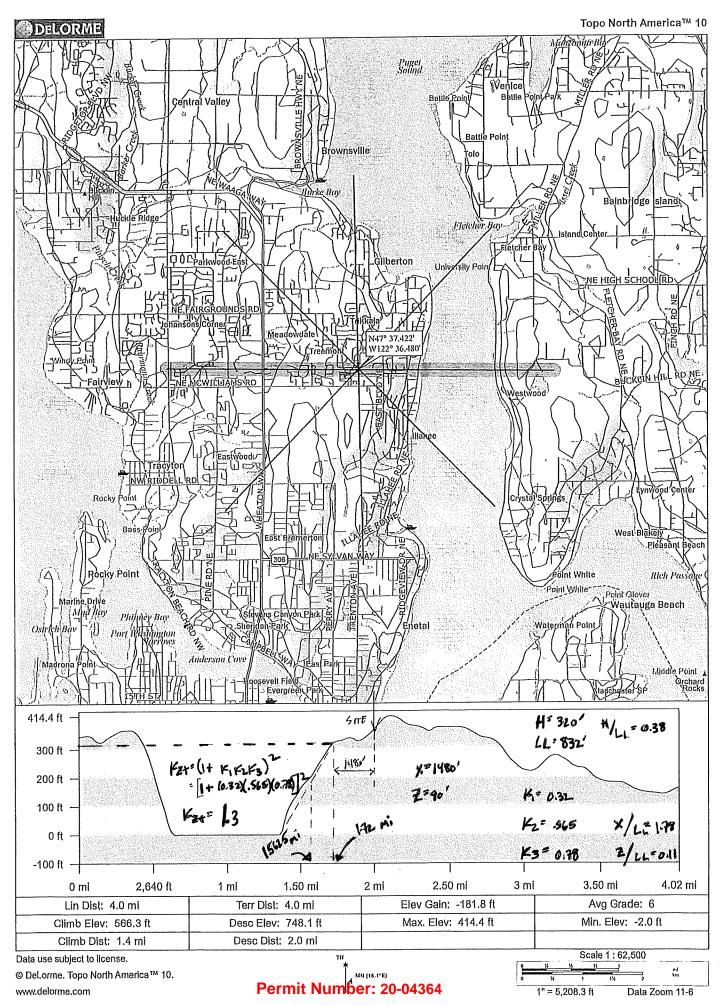

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific appEation without competent prediction of lis accuracy, suitability and applicability by engineers or other increase professionals, ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/nongluvde location in the report.

DELORME




www.delorme.com

Data Zoom 11-6

DELORME

Topo North America™ 10

Seismic Load Calculation for Components and System

(Reference: IBC 2015 Section 1613 & ASCE 7-10 Section 13.3)

Seismic Force:

0.2s Spectral Response Acceleration, Site Class B, S _s	=	1.465	(ASCE 7, Figure 22-1 thru 22-6)
1.0s Spectral Response Acceleration, Site Class B, S ₁	=	0.580	(ASCE 7, Figure 22-1 thru 22-6)
Site Class	=	D	(ASCE 7, Section 11.4.2)
Seismic Design Category	=	D	(ASCE 7, Tables 11.6-1 & 11.6-2)
Site Coefficient per S _s & Site Class, F _a	=	1.00	(ASCE 7, Table 11.4-1)
Site Coefficient per S ₁ & Site Class, F_v	-	1.50	(ASCE 7, Table 11.4-2)
$S_{MS} = F_a S_s$	=	1.465	(ASCE 7, Section 11.4.3)
$S_{M1} = F_v S_1$	=	0.870	(ASCE 7, Section 11.4.3)
$S_{DS} = 2/3 S_{MS}$	=	0.977	(ASCE 7, Section 11.4.4)
$S_{D1} = 2/3 S_{M1}$	=	0.580	(ASCE 7, Section 11.4.4)
(Per ASCE 7-10, 13.3)			
Component Amplification Factor, a _p	=	1.0	(ASCE 7, Table 13.6-1)
Component Response Modification Factor, R _p	<u></u>	2.5	(ASCE 7, Table 13.6-1)
Component Importance Factor, Ip	=	1.0	(ASCE 7, Table 1.5-2)
Component Operating Weight, W _p	=	W _p	(lb)
Height in structure at lowest point of attachment of component, z ₁	=	87.25	(ft)
Height in structure at highest point of attachment of component, z_2	=	95.25	(ft)
Average Roof Height of Structure, h	=	88	(ft)

Seismic design force, ${\bf F}_{\rm p}$	-	$\frac{0.4a_{p}S_{DS}W_{P}}{R_{p}/I_{p}}$ (1+2z/h)	(Eq. 13.3-1)	
Max. seismic design force, F_{pmax}	=	$1.6S_{DS}I_{p}W_{p}$	(Eq. 13.3-2)	
Min. seismic design force, F _{pmin}	=	$0.3S_{DS}I_{p}W_{P}$	(Eq. 13.3-3)	
Seismic design force at lowest point, F _{P1} Seismic design force at highest point, F _{P2} Min. seismic design force, F _{pmin} Max. seismic design force, F _{pmax}	N 11 11	0.466 W _p 0.495 W _p 0.293 W _p 1.563 W _p	F _{p (AVG)} ≕	0.480
			٦	

Seismic design force, F_p (ASD) = 0.343 W_p

CG	Description	Ву	CGP	Date 9/16/2020
ENGINEERING	Seismic Loads For Components & Systems	Checked		Date
250 4th Ave. South	Project SEO6033A Burke	Scale	N.T.S.	Sheet No.
Suite 200 Edmonds, WA 98020		Job No.	20070.611	

Wind Load Calculation for Other Structures

(Reference: 2015 IBC Section 1609 & ASCE 7-10 Chapter 29)

Wind Velocity Pressure:

Average Roof Height of Building, h (ft)		88	(Per Arc	hitectural Drawings)
Height of Other Structure, z (ft)	=	95.25	(Per Arc	hitectural Drawings)
Basic Wind Speed, V _{3s} (mph)	=	115	(ASCE Fi	igure 26.5-1)
Exposure Category	=	В	(ASCE S	ection 26.7.3)
Risk Category	=	IV	(IBC Tab	ole 1.5-1)
Velocity Pressure Exposure Coefficient,	Kz =	0.98	(ASCE Se	ection 29.3.1 & Table 29.3-1)
Topographic Factor, K _{zt}	=	1.30	(ASCE S	ection 26.8.2 & Figure 26.8-1)
Wind Directionality Factor, K _d	=	0.85	(ASCE S	ection 26.6 & Table 26.6-1)
Velocity Pressure, gz (psf)	=	0.00256KzKzt	KdV^2	(ASCE Eq. 29.3-1)
, , , , , , ,	qz =	36.50	psf	

Design Wind Load on Other Structures

Gust Effect Factor, G	=	0.85	(ASCE Section 26.9)
Net Force Coefficient, Cf	=	1.4	(ASCE Figure 29.4-1 to 29.5-3)
Projected Area Normal to the Wind, A _f or A, (ft ²)		A _f or A _r	(Projected Wind Area)
Design Lateral Wind Load, F (lbs)		qzGCfAf	(ASCE Eq. 29.5-1)

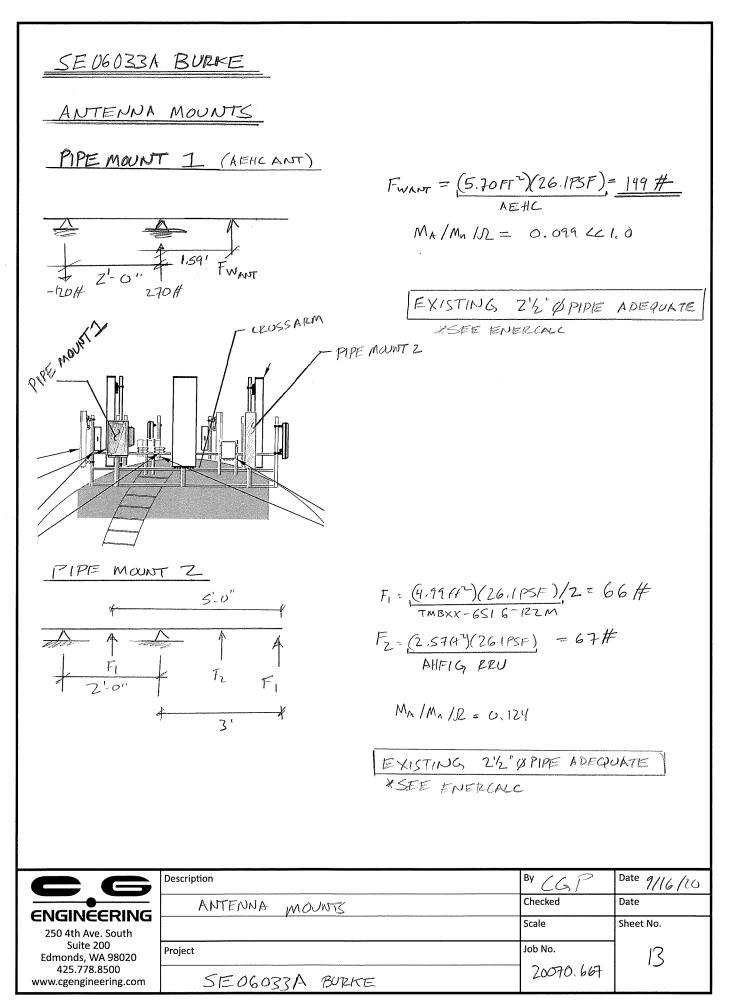
LRFD	F =	43.4	psf x A _f	
ASD	F =	26.1	psf x A _f	

K_z or K_h (ASCE Table 29.3-1)

Height Z (ft)	Exposure B	Exposure C	Exposure D
0	0.57	0.85	1.03
15	0.57	0.85	1.03
20	0.62	0.90	1.08
25	0.66	0.94	1.12
30	0.70	0.98	1.16
40	0.76	1.04	1.22
50	0.81	1.09	1.27
60	0.85	1.13	1.31
70	0.89	1.17	1.34
80	0.93	1.21	1.38
90	0.96	1.24	1.40
100	0.99	1.26	1.43
120	1.04	1.31	1.48
140	1.09	1.36	1.52
160	1.13	1.39	1.55
180	1.17	1.43	1.58
200	1.20	1.46	1.61

	Description		Ву	CGP	Date 9/16/2020
		Wind Loads For Components and Systems	Checked		Date
	Project	SE06033A Burke	Scale	N.T.S.	Sheet No.
Suite 200 Edmonds, WA 98020			Job No.	20070.611	14

ANTENNA COMPARISON


		Existing (A	lpha/Gamma)										
Model	Height	Width	Depth	Weight	Area1	Area2							
Model	(in)	(in)	(in)	(LBS)	(ft^2)	(ft^2)							
TMBXX-6516-R2M	59.9	12	6.5	36.2	4.99	2.70							
TMBXX-6516-R2M	5,9.9	12	6.5	36.2	4.99	2.70							
FFHH-65C-R3	95.9	25.2	9.3	127.6	16.78	6.19							
AHFIB	22	12.1	5.9	66.1	1.85	0.90							
COVP	20.0	16.0	8.0	25	2.22	1.13							
AHLOA	22.1	12.2	7.5	83.9	1.87	1.15							
FXFB	16.6	17.6	5.2	55.1	0.34	0.27							
PCS/AWS TMA	6.3	7.7	6.2	22	0.34	0.27							
PCS/AWS TMA	6.3	7.7	6.2	22	0.34	0.2							
			Total	474.10	33.72	15.5							

Proposed (Alpha/Gamma)												
Model	Height	Width	Depth	Weight	Area1	Area2						
WOUEI	(in)	(in)	(in)	(LBS)	(ft^2)	(ft^2)						
TMBXX-6516-R2M	59.9	12	6.5	36.2	4.99	2.70						
AEHC	38.2	21.5	5.9	108	5.70	1.57						
FFHH-65C-R3	95.9	25.2	9.3	127.6	16.78	6.19						
AHFIG	28.7	12.87	5.59	70.5	2.57	1.12						
COVP	20.0	16.0	8.0	25.0	2.22	1.11						
AHLOA	22.1	12.2	7.5	83.9	1.87	1.15						
FXFB	16.6	17.6	5.2	55.1	2.03	0.27						
FRIA	15.6	17.6	5.2	55.1	1.91	0.27						
PCS/AWS TMA	6.3	7.7	6.2	22	0.34	0.27						
PCS/AWS TMA	6.3	7.7	6.2	22	0.34	0.27						
			Total	605.40	38.75	14.93						

		Existi	ng (Beta)		SPACE OF	
Model	Height	Width	Depth	Weight	Area1	Area2
Wodel	(in) (in)		(in)	(LBS)	(ft^2)	(ft^2)
TMBXX-6516-R2M	59.9	12	6.5	36.2	4.99	2.70
TMBXX-6516-R2M	59.9	12	6.5	36.2	4.99	2.70
FFHH-65C-R3	95.9	25.2	9.3	127.6	16.78	6.19
AHFIB	22	12.1	5.9	66.1	1.85	0.90
COVP	20.0	16.0	8.0	25	2.22	1.11
AHLOA	22.1	12.2	7.5	83.9	1.87	1.15
FXFB	16.6	17.6	5.2	55.1	0.34	0.27
PCS/AWS TMA	6.3	7.7	6.2	22	0.34	0.27
PCS/AWS TMA	6.3	7.7	6.2	22	0.34	0.27
			Total	474.10	33.72	15.58

		Propo	sed (Beta)			
Model	Height	Width	Depth	Weight	Area1	Area2
Model	(in)	(in)	(in)	(LBS)	(ft^2)	(ft^2)
TMBXX-6516-R2M	59.9	12	6.5	36.2	4.99	2.70
AEHC	38.2	21.5	5.9	108	5.70	1.57
FFHH-65C-R3	95.9	25.2	9.3	127.6	16.78	6.19
AHFIG	28.7	12.87	5.59	70.5	2.57	1.12
COVP	20.0	16.0	8.0	25.0	2.22	1.11
AHLOA	22.1	12.2	7.5	83.9	1.87	1.15
FXFB	16.6	17.6	5.2	55.1	2.03	0.27
FRIA	15.6	17.6	5.2	55.1	1.91	0.27
PCS/AWS TMA	6.3	7.7	6.2	22	0.34	0.27
PCS/AWS TMA	6.3	7.7	6.2	22	0.34	0.27
HCS 2.0 Pendant	14.9	9.3	5.8	8.76	0.96	0.60
HCS 2.0 Pendant	14.9	9.3	5.8	8.76	0.96	0.60
			Total	622.92	40.67	16.13

CG	Description	Ву	CGP	Date 9/16/2020
ENGINEERING	Antenna Comparison	Checked		Date
250 4th Ave. South	Project	Scale		Sheet No.
Suite 200 Edmonds, WA 98020	SE06033A Burke WT	Job No.	20070.667	IL

Material Properties Analysis Method : Allowable Strength Design		X	Pipe2-1/2STD	Span = 1.0 ft	Applied Loads	Beam self weight NOT intermally calculated and added Load(s) for Span Number 3 Point Load : W = 0.2463 k @ 1.590 ft	DESIGN SUMMARY	Maximum Bending Stress Ratio Section used for this span	Ma : Applied Mn / Omega : Allowable	Load Combination Location of maximum on span Span # where maximum occurs	Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Upward Total Deflection Max Upward Total Deflection	
trength Design	braced Sending		Pipe2-1/2S1	Span = 2.0		calculated and added 2 1.590 ft		atio = Pipe2-		¢	flection Xion ion	coe for I god Co

Service loads entered, Load Factors will be applied for calculations.

0.015 : 1 Pipe2-1/2STD 0.1490 k 10.123 k

Maximum Shear Stress Ratio = Section used for this span Va : Applied Vn/Omega : Allowable

0.099 : 1 Pipe2-1/2STD 0.237 k-ft 2.393 k-ft

Design OK

nn span Din span Sient Deflection I Deflection I Deflection Max Stress Ra Max Stress R	//www.																										
Load Combination Load Combination Spant Spant Spant bio = 1,121 >= 100 bio = 5,715 >= 100 bio = 100				ar Values	Vnx/Omega		10.12	10.12	10.12	:	10.12	10.12	10.12	01 01	10.12	10.12	10.12	10.12	10.12	10.12	0.01	71.01	ZL'OL	10.12		10.12	10,12
Load Combination Load Combination Span * Where maximum on span bio = 5,715 >=100 10 = 1,121 >=100 10 = 5,715 >=100 10 = 1,715 >=100 10 = 1,210 >=100 10 = 1,210 >=100 10 = 1,210 >=100 10 = 1,210 >=100 4,00 = 2.39 100 100 4,00 = 2.39 100 100 100 = 2.39 100 1	+0.60W+ 2.00 Span #			ary of She	۸uX		16.91	16.91	16.91		16.91	16.91	16.91		16.91	16.91	16.91	16.91	16.91	16.91	10.01	10.01	16.91	16.91		16.91	16,91
Load Combination Load Combination Span # Write maximum on span Span # Write maximum occurs Span # Write maximum occurs Bio = 1,121 >=100 to = 1870 >=100 to = 1872 >=100 to = 1872 >=100 to = 1872 >=100 to = 1872 >=100 to = 239 100 4,000 2.39 100 100 4,000 2.39 100 100 4,000 2.39 100 100 100 100 100 100 100 100	4			Summa	Va Max		-0,00	00.0-	-0,00		0.00	-0.00	00.0-		0.0	-0.00	0.0	-0.00	-0.00	-0.00	00.0	0 7	-0.01	-0.00		-0,00	00'0-
Load Combination Local for in maximum on span Span Mhere maximum on span bio = 1,121 >= 100 to = 2,239 4,00					æ											-	-	-	-	-			-	.			
10 = 1, 10 = 5,1 10 = 15 Numm nax - Mu	ş						1.00	9.	1.00	ł	8	<u>5</u>	1.00	20,	8	8	1.00	100	1.00	1.00		3, 5	3.	8		6	1.00
10 = 1, 10 = 5, 10 = -15 Summ nax - MA	n num on span ximum occur			es	Mnx/Omega		2,39	2.39	2,39	:	2.39	2.39	2.39	000	2.39	2.39	2.39	2.39	2.39	2.39	200	8.7	R5-7	2.39		2.39	2.39
10 = 1, 10 = 5, 10 = -15 Summ nax - MA	bination f maxim ere max			ent Valu	Mnx		4.00	4.00	4,00	1	4,00	4.00	4.00		8,8	4.00	4.00	4.00	4.00	4.00	2	8,4 8,6	4.00	4.00		4.00	4.00
	Load Com Location o Span # wh	1,121 >=100 5,715 >=100 1870 >=100 9526 >=100		ummary of Mom	Ma Max																						
Horison Horison Horison Inn cocurs Span #2 Innection 0.064 ir Innection 0.064 ir Interflection 0.064 ir Interflection 0.064 ir Ist Deflection 0.064 ir Ist Deflection 0.004 ir Ist Deflection 0.003 ir Ist Deflection 0.003 ir Ist Deflection 0.000		Ratio = Ratio = Ratio = Ratio =		S	Mmax -																						
AD- AD- Internet Deflection Internet Deflection Internet	+0.60W+H 2.000ft Span # 2	0.064 ir -0.004 ir 0.039 ir -0.003 ir	mbinati		Mmax +																						
In on span Ium cours ministent Deflection instent Deflection Bellection Deflection Span # Max Stras Span # Max Stras 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	¢		Load Cc	s Ratios	^		0.000	0000	0,000		0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0000	000.0	0.000	0.000		0,000	0.000
non span num ocours inn ocours inn ocours inn bettect ial Deflect ial Deflect		lection ttion on	ses for	Max Stres	W																						
	Load Combination Location of maximum on span Span # where maximum occurs	ximum Deflection Max Downward Transient Def Max Downward Transient Deflec Max Downward Total Deflection Max Upward Total Deflection	s & Stres		Span #		-	2	m		-	5	n	•	- 1	2	m		2	n	•	- (2	e		-	2
Load Combination Load Combination Start Where maximum on span Max Downward Transtent Deficion Max Downward Transtent Defic Max Downward Transtent Defic Max Downward Total Defice Max Defice Max Downward Total Defice Max Defice Max Downward Total Defice Max Defice Max Downward Total Defice Defice Max Downward Total Defice Max Defice Max Defice Max Defice Max Defice Max Defice	combination in of maximu where maxi	m Deflecti ownward T pward Tran ownward T pward Tota	m Force	ation	ttength						1.00 ft	2.00 ft	3.00 ft						2.00 ft	3.00 ft 200 ft	100 00 00	1.00 f		3.00 ft	750S+H		2.00 ft
Load Combination Conditional Condition of mark privation of mark privation and the conditional privation of the conditionation mark privation mark privation mark privation privation conditionation privational conditional conditionation privational conditional conditional conditionation privational conditionational conditionational conditionation privational conditionational conditionationa conditionational conditinati	Load C Locatic Span #	Maximu Max D Max U Max U Max U	Maximu	Load Combine	Segmen	H+Q+	Dsgn. L =	Dsgn. L =	Dsgn. L ≃	#-++	Dsgn. L =	Dsgn. L =	Dsgn. L =	11+J7+O+	Dsgn. L =	⊐ Dsgn. L =	Dsgn. L = +D+S+H	Dsgn, L =	Dsgn. L =	Dsgn. L =		nsgn. t. =	nsgn, L =	Dsgn. L =	+D+0.750L+0.	Dsgn. L ≖	Dsgn. L ≖

10 12 12 12 12 12 6 0 0 6 7 0 7 2 0 10,12 10,12 12,12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 Summary of Shear Values Va Max Vnx Vnx/Omega -0.00 16.91 10.12 10.12 Vnx/Omega Printed: 15 SEP 2020, 8.42AM File: Butkaae6 Software copright ENERCALC, INC. 1983-2020, Build:1220, 8.17 GGG ENGRIJEERING Location in Span 0.000 1.160 1.160 16.91 0.15 0.15 0.15 0.15 0.15 0.15 0.11 0.09 0.00 0.0 0.00 Max. "+" Defi 0.0000 -0.0042 0.0000 Values in KIPS Mnx/Omega Cb Rm 2.39 1.00 1.00 00,1 0,1,0,1 0,1,0,1,0,1 0;10;1 0;0;1 8.1.0 <u>6</u>666 9, <u>6, 6</u>, 6 1.00 1.67 8,8,8 <u>8</u> 8 8 8 1.00 1.67 1.00 1.67 00^{,1} 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39 Summary of Moment Values 4.00 4.00 Project Title: Engineer: Project ID: Project Descr. Mnx 4.00 4,004 4.00 4.00 4.00 4,00 4,004,004 Support notation : Far left is #1 Load Combination W Only Ma Max 0.24 0.18 0.18 0.18 0.18 0.24 0.24 Support 4 Mmax --0.18 -0.18 -0.24 -0.24 Location in Span 0.000 0.000.0 3.000 0.446 0.201 0.267 0.201 0.201 0.267 0.446 Support 3 Mmax + Max. *.* Defl 0.0054 0.0000 0.0542 -0.197 -0.089 -0.089 -0.089 -0.118 Support 2 0.012 0.015 0.015 0.000 0.000 0.012 0.015 0.015 000.0 0.009 0.011 0.011 00000 0.009 0.011 0.011 Max Stress Ratios 0.099 0.099 0.074 0.074 0.074 0.074 0.099 0.099 z Support 1 Span **Overall Maximum Deflections** DESCRIPTION: Pipe Mount Span # You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6
 Segment Length
 Span

 Degn.L = 300 ft
 3

 Segn.L = 300 ft
 3

 Degn.L = 300 ft
 3

 Segn.L = 200 ft
 3

 Degn.L = 200 ft
 Vertical Reactions LIC: #1: KW-06005155 Steel Beam Load Combination Overall MAXimum Overall MINimum Load Combination Title Block Line 1 Load Combination W Only W Only

Printed: 15 SEP 2020, 8:42AM File: Burke.ec6

Project Title: Engineer: Project ID: Project Descr:

Title Block Line 1 You can change this area you can change this area up the usuing the "Printing & Title Block Line 6 Title Block Line 6

Software copyright ENERCALC, INC. 1983-2020, Bulki 12,20.8.17 CCI ENCINEER

35.0 ksi 29,000.0 ksi

Fy : Steel Yield : E: Modulus :

Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set : IBC 2018

Material Properties

DESCRIPTION: Pipe Mount CODE REFERENCES

Steel Beam LIC. # . KW-0600515 W(0.2483)

Pipe2-1/2STD Span = 3.0 ft

₹

Pipe2-1/2STD Span = 2.0 ft

5 SEP 2020. 9 00AM File Burke act 2020. Data 17.16 CG ENGINEERING		VV(0,109)		DESIGN OK DESIGN OK 0.018 : 1 0.018 : 1 0.183 k -0.133 k +D-0.500.14 Span # 2	Summary of Shear Values Max Vrxx VrxVOmena	16.91 16.91 16.91	0 16.91 10.12 0 16.91 10.12 0 16.91 10.12	0 16.91 10.12 0 16.91 10.12 0 16.91 10.12	0 16.91 10.12 0 16.91 10.12 0 16.91 10.12 0 16.91 10.12
Project Title: Engineer: Project ID: Project Descr: Project Descr: Solwer cepright ENRECALC, INC. 182-2020, 9 00AM	Fy : Steel Yfield : 35.0 ksi E: Modulus : 29,000.0 ksi	VV(0 ₁ 111)	Pipe2-1/25TD Span = 3.0 ft	Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio = 0.018: 1 Section used for this span Va: Applied Va: Applied Va: Applied Laad Combination : 0.018: 1 Va: Applied Laad Combination : 0.000 # Span # Were maximum occurs Span # 2 1.322 >=100	Values Anx Mnx/Omedia Ch Rm Va	4,00 2.39 1.00 1.00 4,00 2.39 1.00 1.00 4,00 2.39 1.00 1.00	4,00 2.39 1.00 1.00 0.00 4,00 2.39 1.00 1.00 0.00 4,00 2.39 1.00 1.00 0.00 4,00 2.39 1.00 1.00 0.00	4,00 2.39 1,00 1,00 -0,00 4,00 2.39 1,00 1,00 -0,00 4,00 2.39 1,00 1,00 -0,00	4.00 2.39 1.00 1.00 -0.00 4.00 2.33 1.00 1.00 -0.00 4.00 2.33 1.00 1.00 -0.00
CBC 2013, ASCE 7-10	Jesign	W(0,109)	Pipe2-1/25TD	0.124:1 Maxim 0.124:1 Maxim 2.125TD 0.296 k-t 0.296 k-t 0.290 in Ratio = 0.090 in Ratio = 0.090 in Ratio = 0.009 in Ratio = 0.009 in Ratio = 5;	- Xeu	000 000	0000 00000 00000	0000 00000 00000	0000 0000 0000 0000
Tile Block Line 1 You can change this area , using the "Settings" menu item and then using the "Printing & Tile Block Selection. Tile Block Line 6 Steel Beam Lice Action Selection . CODE REFERENCES CODE REFERENCES CODE REFERENCES Load Combination per AISC 360-10, IBC 2012, Load Combination FIE 18C 2012,	Material Properties Analysis Mehod : Allowable Strength Design Beam Bracing : Completely Unbraced Bending Axis : Major Axis Bending	X	Pipo2-1/2STD	Applied Loads Barn sel weight NOT internally calculated and added Barn sel weight NOT internally calculated and added Load(s) for Shan Number 3 Point Load : W = 0.1090 k @ 30 ft, (TMBXX) Point Load : W = 0.1110 k @ 150 ft, (AHFIG) Point Load	orces & Stress	Lefiguri oparin 1.00 ft 1 3.00 ft 3	+D+L+H Dsgn.L = 1.00 ft 1 Dsgn.L = 2.00 ft 2 Dsgn.L = 3.00 ft 3	-D+L/+H Dsgn.L= 1.00 ft 1 Dsgn.L= 2.00 ft 2 Dsgn.L= 3.00 ft 3 +D+S+H	

Summary of Shear Values Va Max Vnx Vnx/Omega Location in Span 0.000 1.187 1.187 Printed: 15 SEP 2020, 9-09AM File: Burke.ec6 right ENERCALC, INC. 1983-2020, Bulld:1 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 (5)
 16.91 16.91 0.12 0.13 0.13 0.13 0.09 0.14 0.10 0.10 0.10 8,9,9,9 0.00 0.0 0.00 0.12 0.13 0.13 Max. ** Defl 0.0000 0.0045 0.0000 Values in KIPS 뛑 1.00 00.1 <u>5</u> <u>6</u> <u>6</u> 8,6,6 <u>6, 6, 6,</u> <u>666</u> 0; 1 0; 8,6,6 1.00 1.86 1.00 8,8,8 888 8,8,8 0;1 8;10 0;10 8,6,6,6 1.00 1.86 0.1 0.1 0.0 1.0 0.1 0; 8; 6; පි Mnx/Omega 2.39 2.39 239 2.39 2.39 2.39 2.39 2.39 2.39 888 2,39 239 Software Summary of Moment Values Ma Max Mrx N Project Title: Engineer: Project ID: Project Descr. 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4.00 4.00 4,00,4 4.00 0.4.6 Support notation : Far left is #1 Load Combination W Only 0.30 22.0 0.22 0.30 Support 4 Mmax --0.30 -0.22 0.22 0.30 Location in Span 0.000 Support 3 0.521 0.535 0.313 0.235 0.235 0.313 0.313 Mmax + Support 2 -0.192 -0.115 -0.115 -0.087 -0.087 -0.115 -0.115 -0.115 Max. ** Defl 0.0056 0.0000 0.0901 0.009 0.013 0.010 0.000 0.011 0.018 0.013 0.000 0.011 0.018 0.013 0.000 0.000 0.000 0,009 0,013 0,010 0.000 Max Stress Ratios 0.124 0.124 0.093 0.093 0.093 0.093 0.124 0.124 Support 1 **Overall Maximum Deflections** Span ~ ~ Steel Beam LIC:# TKW-05005155 DESCRIPTION: Pipe Mount 2
 Vertical Reactions

 Load Combination
 Load Combination

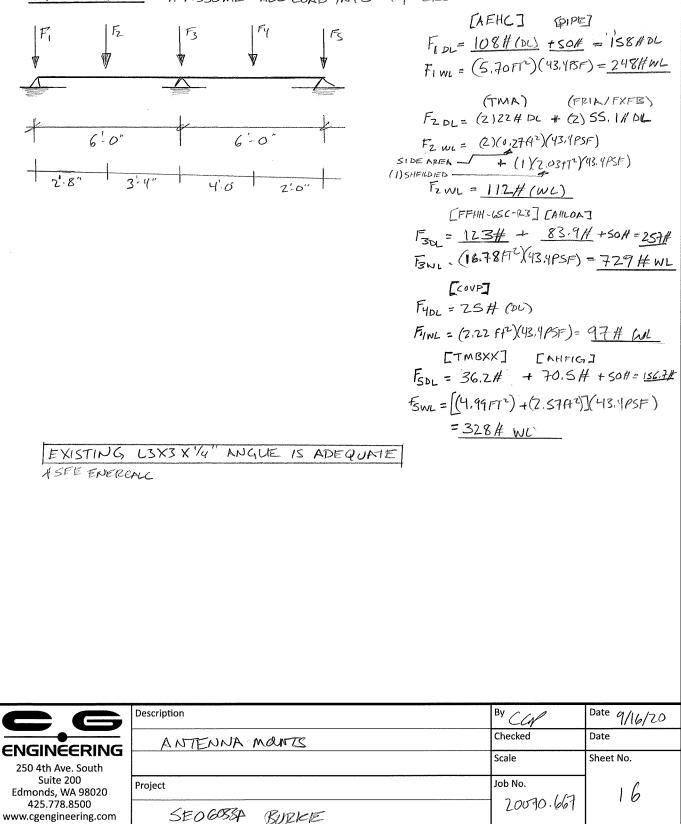
 Overall MiNimum
 Overall MiNimum

 Overall MiNimum
 D-0, 250, 40, 500, 41

 D-0, 250, 40, 250, 40, 500, 41
 M-0, 40, 500, 41

 M Only
 NON

 M Only
 NON
 Span # Title Block Line 1 You can change this area using the "Selfings" menu item and then using the "Printing & Title Block Line 6 Title Block Line 6 0 N +- < > m - CI (1) - CI 00 Lead Combination Segment Length Span Segment Langth Span Darn L = 2000 T 2 Segment L 2 5 Load Combination W Only W Only


10.12 10.12 10.12 10.12

10.12 10.12

SE06033A TSUEKE

ANTENNA MOUNTS

<u>CRUSSARM</u> * ASSUME ALL LOAD INTO TOP CROSSARM

od: 15 SEP 2020, 4:49PM	Title Block Line 1 You can change this area using the "Selfungs" menu item and then using the "Printing & Title Block "Beeklon.					Project Title: Engineer: Project ID: Project Descr.	itte: escr.			Printed: 1	Printed: 15 SEP 2020, 4:49PM	4:49PM
File: Burke.ec5 1883-2020, Bullet:12, 20, 8.17 .ccs ancintaazince	Steel Beam LIC: 11 (W) 00005155 DESCRIPTION: Crossarm							Software cot	yright ENEF	File: Burke ee6 Software copyright EVERCALC, INC, 1983-2020, Bullet 12,208, 17 COS EVICINESRI	File: Burke,ec6 3-2020, Bulk:12,20,8,17 CG ENGINEERIN	IRA.ec6 2.20.3.17 NEERING
	Load Combination	Max Stress Ratios	ss Ratios		ŝ	Summary of Moment Values	ment Value:	10		Sun	Summary of Shear Values	ar Values
which has a property of the second	Segment Length Span #	W	>	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	æ	n Va Max		Vnx Vnx/Omega
	Dsgn. L = 6.00 ft 1 Dsgn. L = 6.00 ft 2 .D.07201 = 0 7201 .U	0.176 0.110	0.024 0.016	0.21 0.04	-0.14 -0.14 -4	0.21	2.05	128	1.52 1.00 2.63 1.00	0.23	3 16.20 3 16.20	9.70 9.70
) ksi) ksi	+U+0.750L1+0.750L+H Dsgn.L= 6.00 ft 1 Dsgn.L= 6.00 ft 2	0.176 0.110	0.024 0.016	0.21 0.04	-0.14 -0.14	0.21 0.14	2.01	120 123	1.52 1.00 2.63 1.00	0.23	3 16.20 5 16.20	9.70 9.70
	+D+0.7502+40.7502+H Dsgn, L = 6.00 ft 1 Dsgn, L = 6.00 ft 2	0.176 0.110	0.024 0.016	0.21	-0.14 -0.14	0.21	2.05	1.20	1.52 1.00 2.63 1.00	0.23	3 16.20 5 16.20	9.70 9.70
70(0.157) W(0.328)	+D+0.60W+H Dsgn.L= 6.00 ft 1 Dsgn.L= 6.00 ft 2	0.243	0.041 0.038	0.29 0.12	-0.22	0.29	2.05	1.21	1.55 1.00 2.11 1.00	0.39	9 16.20 7 16.20	9.70 9.70
₩	+LH-U./UE-HH Dsgn.L = 6.00 ft 1 Dsgn.L = 6.00 ft 2	0.176 0.110	0.024 0.016	0.21 0.04	-0.14 -0.14	0.21 0.14	2.01	120 123	1.52 1.00 2.63 1.00	0.23	3 16.20 5 16.20	9.70 9.70
	+D+0.750L+0.750L+0.450W+H Dsgn. L = 6.00 ft 1 Dsgn. L = 6.00 ft 2	0.226 0.161	0.036	0.27 0.10	-0.20	0.27 0.20	2.05	1.21 1.23	1.54 1.00 2.18 1.00	0.35	5 16.20 2 16.20	9.70 9.70
	+D+0.750L+0.750S+0.450W+H Dsgn. L= 6.00 ft 1 Dsgn. L= 6.00 ft 2	0.226 0.161	0.036 0.033	0.27 0.10	-0.20	0.27 0.20	2.02	121 123	1.54 1.00 2.18 1.00	0.35	5 16.20 2 16.20	9.70 9.70
applied for calculations.	+D+0.750L+0.750S+0.5250E+H Dsgn. L = 6.00 ft 1 Dsgn. L = 6.00 ft 2	0.176 0.110	0.024 0.016	0.21 0.04	-0.14 -0.14	0.21 0.14	2.01	1.20 1.23	1.52 1.00 2.63 1.00	0.23	3 16.20 5 16.20	9.70 9.70
	+0.600+-0.6004+0.6004 Dsgn. L = 6.00 ft 1 Dsgn. L = 6.00 ft 2	0.173 0.134	0.031 0.032	0.21 0.10	-0.16 -0.16	0.21 0.16	2.02	121 123	1.56 1.00 1.97 1.00	0.30	0 16.20 1 16.20	9.70 9.70
	+U.B.U.C.Y.U.E.Y.B.UH Dsgn. L = 6.00 ft 1 Dsgn. L = 6.00 ft 2	0.106	0.014	0.13 0.02	-0.08 -0.08	0.13 0.08	2.01	120 123	1.52 1.00 2.63 1.00	0.14	4 16.20 0 16.20	9.70 9.70
	Overall Maximum Deflections	ections	May ** Dof	I contion in Snan	Chan	Load Combination	ination			Boff "1" vcM	notion 1	Location in Coon
	+D+0.60W+H	1	0.0370	2	2,640					0.0000	treated	000
	W Only	2	0.0137	m	.840	to D Only			1 mil	-0.0045		1.440
	Load Combination	Support 1	Support 2	Support 3	1		149110					
	Overali MAXimum Overali MiNimum	0.395	0.950 0.253	0.373 0.096	~							
0.041 : 1	H+-H-0-	0.229 0.229	0.422	0.15								
L3x3x1/4 0.3948 k	H+S+Q+	0.229	0.422	0.15								
9.701 k +D+0.60W+H	+D+0'750L+0.750L+H +D-0.750L+0.750L+H	0.229	0.422	0.159								
0.000 ft Span #1	+D+0,60W+H	0.395	0.950	0.37	<i>.</i>							
	+D+0.750Lr+0.750L+0.450W+H	0.353	0.818	0.319								
	+D+0.750L+0.750S+0.5250E+H	0,229	0.422	0,15								
	+0.60D+0.60W+0.60H +0.60D+0.70E+0.60H	0.303	0.781 0.253	0.00	നശ							
	D Only W Only	0.229 0.276	0.422 0.880	0.159 0.356	കയ							
Summary of Shear Values	H Only											

Printed: 15 SEP 2020, 148PM Fills: Burkadd Salwere ceyndin ENERCALC, NO. 1933-2020, Burkt 22, 14, 17 CG ENGINEERING	-W(0.328)	¥P¶ ⊤	Design OK 0.041 : 1 2.0.041 : 1 1.1.2.3.241 k 0.3948 k 0.3948 k 0.300 H Span #1 Span #1	Summary of Shoar Values Max Vnx Vnx(Omera	16.20 9.70 16.20 9.70	16.20 9.70 16.20 9.70 16.20 9.70 16.20 9.70
Printod: 15 SEP 2020, 4.40P File: Burka.org C. NK: 199-2020, Burka.org C.G. ENGINEERI	1: 29,000.0 ksi 29,000.0 ksi Dio.025) wio.0370.0.157) wio.328)		900 100 100 100 100 100 100 100 100 100	Summary o	0.23	0.23 0.16 0.23 0.16 0.16
IERCALL	29,0 29,0	-		Ē	1.00	1,00 1,00 1,00 1,00
ught EP	(0.025	4 0. #	a, v	£	1.52	1.52 2.63 2.63 2.63
Software cop	Fy : Steel Yield : E: Modulus :	L3x3x1/4 Span = 6.0 ft	im Shear Stress Ratio = Sector used for this span VirComega : Allowable Und Combination Span # where maximum occurs (23 ≥=360 0 <850 45 >=160	ss Miny/Omena	1.20	1.20 1.23 1.20 1.23
			m Shear Stress Ratio = 8edion usef for this span Va: Arptied Vn/Omega: Allowat UnOmega: Allowat Unod Combination 2505 251 # Meire maximum oco 2560 0 ≤560 0 ≤560 0 ≤560	oment Value Mnx	2.05	2.05 2.05 2.01 2.05
Project Title: Engineer. Project ID: Project Descr.	0.729)		Maximum Shear Stress Ratio Section used for this sta Vari Applied VinComega : Allow Loadion of maximum on beation of maximum on Span # Where maximum on s 260 = 4,423 >=360	Summary of Moment Values	0.21 0.14	0.21 0.14 0.21 0.14
7-10	D(0.257) [W(0.729)	***4 +	R a the constraint of the cons			0.0- 14 10- 14 10- 14 14 14 14 14 14 14 14 14 14 14 14 14
13, ASCE	ι ŭ		0f 7 1 0.243:1 1.208.kf 1.208.kf 1.208.kf 1.208.kf 5pan #1 5.654 0.016 in F 0.037 in 2.037 in	mbinatic	0.21	0.21 0.04 0.25
CBC 201	sign 102)	+ 0	1 m +	oad Col Ratios	0.024	0.024 0.016 0.024 0.016
IBC 2012	ble Strength Design tely Unbraced Axis Bending Dro.1542) /vro.1102)	L3x3x1/4 L3x3x1/4 Span = 6.0 ft	d added to loading W = 0.2460 k @ 0.256 ft W = 0.1102 k @ 2.667 ft W = 0.1102 k @ 5.0 ft W = 0.2300 k @ 5.750 ft W = 0.2500 k @ 5.7500 ft W = 0.	Ses for Load Max Stress Ratios	0.176	0.176 0.110 0.176 0.176 0.110
area initing & Crossarm AISC 366-10, n Set: IBC 20			ed ar 5570, 5770, 5770, 5770, 373, 1333 : /	Maximum Forces & Stresses for Load Combinations ad Combination Maximum Forces & Stresses for Load Combinations	5	-a -a
le Block Line 1 ur can charge this area and then using the "Settings" menu item d then using the "Printing & le Block Line 6 Steel Beam DESCRIPTION: Crossamm DESCRIPTION: Crossamm D	Material Properties Analysis Method: Allow Beam Bracing: Compl Bending Axis: Majol ertical Leg Down ertical Leg Down D(0.158) ,vv(0.248)	-	 Beam self under 1 and beam self under 1 Paint Load : D = 0.1542, W Paint Load : D = 0.1542, W Paint Load : D = 0.1542, W Point Load : D = 0.2570, W Point Load : D = 0.0250, W Point Load : D = 0.1570, M Point D = 0.1510, D =	ximum Forces & Stres	6.00 ft 6.00 ft	6.00 ft 6.00 ft 6.00 ft 6.00 ft 6.00 ft
Tile Blok Line 1 You can charge this area using the "Settings" menu item using the "Settings" menu item Tile Block Setection. Tile Block Line 6 Steel Beam DESCRIPTION: Crossarm DESCRIPTION: Crossarm DESCRIPTION: Crossarm CODE REFERENCES Calculations Per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: IBC 2018	Material Prof Analysis Method Beam Bracing : Bending Axis : Vertical Leg Down D(0.156), W(0.:	*∞{ ⊥	Bean se Bean se Poir Poir Poir Poir Poir Poir Poir Naximur Sector San #: Max Ur Max Ur Max Ur	Maximum Fc Load Combination	Degn. L =	

SEOGO33A BURKE ANTENNA FRAME FWIND = (10,67 A2)(43,4PSF) = 1796 #/SIDE 1/2" & THREADED FTOTAL = (3)(1796#)(0.8) ROD THES, TYP L3×3×14° SHIFELDING KICKER J FACTOR Fw = 4310#(UT); 2586/#(ASD) -w/2 TO REMAIN 1/2" & THREADED ROD BRACES I all LOAD PER CABLE = $\sqrt{\left(\frac{4304}{9}\right)^{2} + \left(\frac{4304}{9}\right)^{2}} = 1524 \# (107); 914 \# (ASD)$ 914# < 1130 # CAPACITY (PER ORIGINAL CALCS) MA/TAPL = U. 81 STRESSED L3X3X 1/4" KKKER Fw = 4310#1/2 = 2155# FDL = 623# 4'-0" Fw $F_{KICKER} = \frac{2155\#}{\cos 45^{\circ}} + \frac{623\#}{\cos 45^{\circ}} = \frac{3929\#}{2924}$ 4-0 Poi EXISTING L3X3X'4" KICKER 15 ADEQUATE Description Date 9/16/20 BYCar Checked Date ANTENNA FRAME GINEERING Scale Sheet No. 250 4th Ave. South Suite 200 Job No. Project Edmonds, WA 98020 18 425.778.8500 20070.667 SEOGOJSA BURKE www.cgengineering.com

	You can change this area and the Settings" menu item and then using the Printing & Title Block" selection.		Project Title: Engineer: Project ID: Project Descr:			Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection.	item g &		Project Title: Engineer. Project ID: Project Descr.		
	IIIe Block Line 6 Steel Column DESCRIPTION: Kicker DESCRIPTION: Kicker		Software copyright E	Printed: 16 SEP 2021 File: E NERCALC, INC. 1983-2021, Build	10:22AM Irke ac6 12:20 E 17 INEERING	Title Block Line 6 Steel Column Lice #: KW20005155 DESCRIPTION: Kich	er		0	Printed.	16 SEP 2020, 10:234 File: Burke.ed 183-2020, Bulid:12,20,8,1 66 ENGINEER
	Code References					Maximum Reactions				Note: Only non-zero Mv - End Moments 4-44	Mu - End Moment
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Calculations per AISC 360-10, IBC 2012, CBC 2013, Load Combinations Used : IBC 2018 Constal Information	ASCE 7-10				Load Combination +D+Lr+H			@ Base	@ Base @ Top	
(b) Tent tent tent tent tent tent tent tent			Overall Column Height Top & Bottom Fixity To	5.670 ft 5.8 Bottom Pinned		++D-0.50Lr+0.750L+H ++D-0.750Lr+0.750L+H +-D-0.60W+H		0.909 0.909 2.738			
Substant Last France Substant	odulus	Brace con X-X (wi Unbra Y-Y (de Unbra	dillon for deflection (buckling) al dth) axis : ced Length for buckling ABOUT Y-> pth) axis : ced Length for buckling ABOUT X->	ng columns : Axis = 5.670 ft, K = 1.0 : Axis = 5.670 ft, K = 1.0		+D+0.70E+H +D+0.750L+0.750L+0.45 +D+0.750L+0.750S+0.45 +D+0.750L+0.750S+0.45 +D+0.750L+0.750S+0.50H	0W++H 0W+H 50E+H	0.909 2.280 0.909 2.374			
* 0 tel tal fater	Applied Loads	Ser	vice loads entered. Load Fact		culations.	+0.60D+0.70E+0.60H		0.545			
1 0.004 1 0.004 1 0.004 1 0.004 1 -0.00000000000000000000000000000000000	Column self weight included : 27.783 lbs * Dead Load Factor AXIAL LOADS Axial Load at 5.670 ft. D = 0.8810. W = 3.048 k					o Only S Only S Only		80.00 0			
- 0.01041 Mamma Las Researce. 0.000 0.0101 Tagangy, M. 0.01 0.0101 Tagangy, M. 0.01 0.0101 Tagangy, M. 0.01 1.22618 Mamma Researce. Mamma Researce. 1.22618	DESIGN SUMMARY					W Only		3.048			
Mather Transmist Mather XX and Ranking	= 0	0.2064 :1	Maximum Load Reactions	c		H Only Extreme Reactions					
1 2.733 External Reference 2.01 2.01		0.0 #	I op along X-X Bottom along X-X Ton along X-Y	× × 0 × 0 × 0 × 0		Item			1	Mx - End Moments k-ft @ Base @ Top	My - End Moments @ Base @ Top
Mathem 1.30 kl. Muture Last Charchers	Pa; Avial		Bottom along Y-Y	0.0 k		Axial @ Base	Maximum	3.048			
Mode 115 Heil of the first	Marx: Applied	0.0 k-fl	oad Deflectio			Reaction, X-X Axis Base	Maximum	0.909			
Indicate International base and memory base and base	Min-x / Omega : Allowable Mo.v - Ameliod	1.135 k-ft	combination	ar 0.01	Ve base	Reaction, Y-Y Axis Base	Maximum	606'0			
Statio = 001 mem 003 team 0.01 mem 0.03 team <td>mery - cyphere Mn-y / Omega : Allowable</td> <td>1.135 k-ft</td> <td></td> <td>at 0.0 ft</td> <td>we base</td> <td>Reaction, X-X Axis Top</td> <td>Maximum</td> <td>806'0</td> <td></td> <td></td> <td></td>	mery - cyphere Mn-y / Omega : Allowable	1.135 k-ft		at 0.0 ft	we base	Reaction, X-X Axis Top	Maximum	806'0			
Lease 0.0 bit mem 0.00 bit mem <td></td> <td>0.0 :1</td> <td>tor load complianion :</td> <td></td> <td></td> <td>Reaction, Y-Y Axis Top</td> <td>Minimum Maximum</td> <td>606'0</td> <td></td> <td></td> <td></td>		0.0 :1	tor load complianion :			Reaction, Y-Y Axis Top	Minimum Maximum	606'0			
Model 339 Jondal 0.0 Jondal 0.0 Jondal 0.0 Jondal 0.0 Jondal 0.0 Jondal 0.0 Stress Flaits 0.0 Stress Flaits 0.00 Jondal 0.0 Stress Flaits 0.00 Jondal 0.00 Jondal 0.00 Jondal Maximum Jondal 0.00 Jondal Maximum Jondal 0.00 Jondal Maximum Jondal 0.00		0.0 0.0 ft				" Moment, X-X Axis Base	Minimum Maximum	606'0			
Martinin Adial + Bendring Nates Ratio Rationary Adial + Bendring Nates Ratio Stress Ra	At maximum location values are Va : Applied Manuaria	000				" Moment, Y-Y Axis Base	Minimum Maximum	606'0 606'0			
Ratinum Axial + Bending Stress Ratios Maximum Axial + Bending Stress Ratios Maximum Stress Ratios Ma	Load Combination Results	<u>e</u> 55				Moment, X-X Axis Top	Minimum Maximum Minimum	606.0 0.909 0			
0.055 PASS 0.001 1.00 1.00 1.27:11 1.27:11 0.000 PASS 0.001 1.00		Cp	KXLX/RX	1 Shear Rat Status	ation	Moment, Y-Y Axis Top	Maximum Minimum	606'0			
0.005 PASS 0.001 1.00 <	0.069 PASS 0.069 PASS	11.00 11.00	127.11	PASS	0.00 ft 0.00 ft	Maximum Deflection	s for Load Com	inations	Max Y-Y Deflection	Distance	
0.069 PASS 0.001 1.00 <	0.069	5.6 8 8 8	127.11 1		0.00 ft 0.00 ft	H+ H+ C+		0.0000 h	0.000 ri 000 n		
0.206 PASS 0.001 1.00 1.07.11 1.07.11 0.000 in	0.069	9.0 8.0	127.11		0.00 ft 0.00 ft	H+S+U+					
0.172 PASS 0.001 1.00 1.00 127.11 127.11 0.000 PASS 0.001 0-0-0.600+1 0.000 1 0.0000 1 0.000 1 0.0000 1 0.000 1 0.000 1 0.000 1 0.000	0.206 0.069	6.6. 8.0	127.11 127.11		0.00 ft 0.00 ft	H+D05/201-105/201-40+					
0.068 FASS 0.001 1.00 <	0.172 0.172	6. 1	· 127.11		0.00 ft 0.00 ft	++D+0.60W+H +D+0.70E+H					
Image: Contract in the second secon	0.069 0.179	888	127.11		0.00 ft 0.00 ft	+D+0.750Lr+0.750L+0.4 +D+0.750L+0.750S+0.4	H+M09				
	Axial Reaction	× 2	Ŵ	ero reactions	re listed. Woments	+0.60D+0.70E+0.60H	23UE+11				
	@ Base 0.909				@ Top	u Only Lr Only				0.000 ft	

Max. Y-Y Deflection 0.000 0.000 0.000 0.000 1.23 in/4 0.57 in/3 0.926 in 1.020 in/3 1.230 in/4 0.569 in/3 0.926 in 0.000 0.490 in^4 0.415 in^3 0.585 in 1.00 deg **** Distance 0.000 0.000 0.000 $\underset{+}{\times}$ р п н 11 18 n в a 11 11 A X-A ... 0.0000 h 0.0000 h 0.0000 h 1.3x3X1/4 3.000 h Lantr Tantr Tantr Max, X-X Deflection Load 1 Maximum Deflections for Load Combinations Load Combination Max. XX Deflect S Only 0.0000 1 S Only 0.0000 1 H Only 0.0000 1 3.000 in 0.250 in 1.440 in^2 4.900 plf 0.625 in ¥ 0.240 in 0.836 in 0.000 in Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block Line 6 Title Block Line 6 Steel Section Properties : Depth = Steel Column LETERWYD6005155 DESCRIPTION: Kicker в н н ni00.£ Eo Sketches Leg Width Thickness Area Weight Kdesign Υcg å Permit Number: 20-04364

VICEN'S

3.0266

300

3.00in

\$ 0.25 + a.C.+.

0:15+10%

Printed: 16 SEP 2020, 10,234M File: Burke ao5 Solware copyright ENEPCALC, INC: 1982-2020, Burker:220,8,17 Golf 34G1016

Project Title: Engineer: Project ID: Project Descr:

0.031 in^4 0.02 in^6 1.650 in

н н н

- 2 %

*** Distance 0.000 ft 0.000 f 0.000 f

a. a. a. a.

SEOGO33A BURKE	E		KI	LKE	R a	CONNI	FOTION	5		
			1		Bol	STATUTE COLORADO				
R	<i>"</i>					4″Ø_				
			Rnv	<u>+ (2</u>			2)(20	0113)		
			<u></u>		1.4	a				~
				<u>= '</u>	4.28	<u> </u>	> 1	3.93 \	<u> (</u>	<u>>+)</u>
TW = 2.16K				21.1						
			(2)	94"	(\emptyset)	<u>polits</u>	ave	adeo	<u>iva te</u>	
						.		· · · · · · · · · · · · · · · · · · ·		
Check Weld		•								
	34		1 					-	·····	
* assume of	' larig <u>3/16</u> ".	ΥΝΟΙΟΙ		· · · · · ·						
Pro = O (ol =)	0.707)(3/1	(d")(3") =	8-3	5 4	>	2.16	, 14	OK)	
	2				na - a . In 1					
								,		
3" long 3/16	" fillet weld	is adea	vate			· · · · · · · · · · · · · · · · · · ·				
										n
Check Epoxy			1							
J						1				
* Assume 4"	× 4" SQ plate	, minimur	<u>n</u>						·	
Allomable	r = 2790 psi (<u>(4")(4")</u>	>>	-						
	$F=qq$, $G \neq$				= Z.I	6 14	GE	1		
		· · · · · · · · · · · · · · · · · · ·								
		quate								
A"X4" Belzo	ma IIII is ade	<u>youn</u>								
	<u></u>					. (
			ar 100 0 100 0 10 10 10 10 10 10 10 10 10							
æ a	Description Kicker	Connect	างก			Ву	MABE			16/29
ENGINEERING							ecked		ate	
250 4th Ave. South						Sca	NTS_	Sł	neet No.	
Suite 200 Edmonds, WA 98020	Project SEO(6033A	Burke					No. 0076.6	7	21	3 1
425.778.8500 www.cgengineering.com						2		07	1	

المامان المالي المنابع المطبوط ومطاور والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

PRODUCT SPECIFICATION SHEET BELZONA 1111 FN10132

2131:24年110月1

Taber

The Taber abrasion resistance determined in accordance with ASTM D4060 with 1 kg load is typically: 852 mm³ loss per 1000 cycles H10 Wheels (Wet)

24 mm³ loss per 1000 cycles

April (Haliak)

Tensile Shear

CS17 Wheels (Dry)

When tested in accordance with A	STM D1002, using degreased
strips, grit blasted to a 3-4 mil profile	e, typical va <u>lues will be</u> :
Mild steel	(2,790 psix19.2 MPa)
Brass	1,650 psi (11.4 MPa)
Copper	2,060 psi (14.2 MPa)
Stainless steel	2,960 psi (20.4 MPa)
Aluminium	1,950 psi (13.4 MPa)

Tensile fatigue

The Tensile fatigue in accordance with ASTM D3166 at ambient temperature and 653 psi (4.5MPa) applied static tensile stress is >1.000.000 cycles.

Pull Off Adhesion

When tested in accordance with ASTM D	4541/ ISO 4624, the pull
off strength from grit blasted steel will be	typically:
3240 psi (22.3 MPa)	68°F (20°C) cure
2980 psi (20.5 MPa)	212°F (100°C) cure

Cleavage strength

When tested in accordance with ASTM D 1062, the cleavage strength to grit blasted steel will be typically: 68°F (20°C) cure 1199 pli

CHERICAL ARVERANCE

The mixed Belzona 1111 has been independently analyzed for halogens, heavy metals, and other corrosion-causing impurities, with the following typical results:

Analyte	Total Concentration (ppm)
Fluoride	224
Chloride	398
Bromide	ND (<12)
Sulfur	1019
Nitrite	ND (<6)
Nitrate	4
Zinc	3.4
Antimony, Arsenic, Bismuth, Cadm	ium, Lead, Tin, Silver, Mercury,
Gaillum and Indium	ND (<3.0)
	ND : Not Detected

CHEMCAURSISTANCE

Once fully cured, the material will demonstrate excellent resistance to most commonly found inorganic acids and alkalis at concentrations up to 20%.

The material is also resistant to hydro-carbons, mineral olls, lubricating oils and many other commonly found chemicals.

* For a more detailed description of chemical resistance properties, refer to relevant Chemical Resistance chart.

COMPRESSIVE PROPERTY

When determined in accordance with ASTM D695 (1.0in/25.4mm thick test pieces), typical values will be: Cure temperature

Compressive Strength (Maximum) 12525 psi (86.4 MPa) 16645 psi (114.8 MPa)	68°F (20°C) 212°F (100°C)
Compressive Strength (Yield) 9620 psi (66.3 MPa) 10955 psi (75.6 MPa)	68°F (20°C) 212°F (100°C)
Compressive Modulus 1.77 x 10 ⁵ psi (1217 MPa) 1.75 x 10 ⁵ psi (1205 MPa)	68°F (20°C) 212°F (100°C)
When determined using a modified version of	ASTM D695. at

When determined using a modifi thickness more representative of in service application, typical values will be:

Thickness	Compressive Strength (Yield)	Cure Temperature
0.24 in (6.0 mm)	13095 psi (90.3 MPa) 16450 psi (113.4 MPa)	68°F (20°C) 212°F (100°C)
0.12 in (3.0 mm)	14855 psi (102.5 MPa) 18980 psi (130.9 MPa)	68°F (20°C) 212°F (100°C)

Bonded to grit blasted mild steel (single side)

Thickness	Compressive Strength (Yield)	Cure Temperature
0.12 in (3.0 mm)	19910 psi (137.3 MPa) 23840 psi (164.4 MPa)	68°F (20°C) 212°F (100°C)

iciol: [:ros:]:].k[c][:sor]:]ciols]

Corrosion Resistance

Will show no visible signs of corrosion after 5,000 hours exposure in the ASTM B117 salt spray cabinet.

www.belzona.com

CABINET ANCHORAGE DESIGN

CABIN							
	1						
v	Input Values		(Least out	t out dimonsion	n of equipment f	octorint)	X
	B =	31.6 in 30 in	•	nt Length)	i oi equipinent i	οστριπιτ	
	L = d =	23.27 in			ors/Smallest mo	ment arm)	
	и = Н =	60.4 in	•	nt height)		,	
	Wt =	2206 lbs		nt weight)			
	S _{ds} =	0.977					
	Applied Ford	ces (LRFD; see previous EQ & Wir	nd calcs)		Load Combina	tions for Max I	
	F _{Eh} = Seismic	: Coefficient * Wt =	1060	bs		LRFD	ASD
	$F_{Ev} = \pm 0.2S_{ds}$		431		EQ	0.9D + 1.0E	
		Pressure * [(B or L)*H] =	576		Wind	0.9D + 1.0W	0.6D + 0.6W
	F _{wv} = Vert Pr	ressure * (B*L) =	0	N/A when H>60).		
	Overturning	Moment					
	$M_{OTE} = F_{Eh}H/$		32,001 i	n-lbs			
	$M_{OTW} = F_{Wh}H$		17,388 i				
	morw wh		1,000				
	Resisting Mo	oment					
	$M_R = (Wt)d/2$	2 =	25,667 i	n-lbs			
3							
	Max Uplift						
		LRFD (lbs/side)		T (0.7)	ASD (lbs/s		452
		$(1.0M_{OTE}-0.9M_R)/d + F_{Ev}/2 =$ $(1.0M_{OTW}-0.9M_R)/d + F_{Wv}/2 =$	-245	-	1 _{0TE} -0.6M _R)/d + 0 1 _{0TW} -0.6M _R)/d + 0		452 -213
	I _W =	$(1.00_{OTW}-0.90_{R})/u + F_{Wv}/2 =$	-245	T _W = (0.014	OTW-0.0WR//U+0	0.01 _{Wv} /2 -	-215
	Max Shear						
		LRFD (lbs/side)			ASD (lbs/s	ide)	
		$V_{\rm E} = 1.0F_{\rm E}/2 =$	530		$V_{\rm E} = 0.7F_{\rm E}/2 =$		371
		V _w = 1.0F _w /2=	288		$V_{W} = 0.6F_{W}/2 =$		173
							Wt - Fv
						n /2	I
	Summary of	Anchorage Forces				< <u>− B/2</u>	$\rightarrow \stackrel{B/2}{\longleftrightarrow}$
	3				1		
		LRFD					
× .		Tension, T = 598	lbs/side				
		Shear, V = 530 ASD	lbs/side				
		Tension, T = 452	lbs/side		H <u>Fh</u>		\rightarrow
		Shear, V = 371	lbs/side				
					H/2		
-							
	Summary of	Anchorage					
							\square
		Use (4) 3/8"Hilti Kwik Bolt TZ v	vedge anchor	with 2"		\prod	<u>^</u>
		embedment into concrete slab					d
		the unit, M				<	>
						Τ	c
						<	B>
						I.	I.
		Description	chorage	2	Ву	CGP	Date 9/18/2020
		Equipment An	ciorage			CGP	
ENGINE	ERING	HPL3 Battery C	Cabinet		Checked		Date
		III LS Battery C					

Permit Number: 20-04364

SE06033A Burke

Project

250 4th Ave. South

Suite 200

Edmonds, WA 98020

Scale

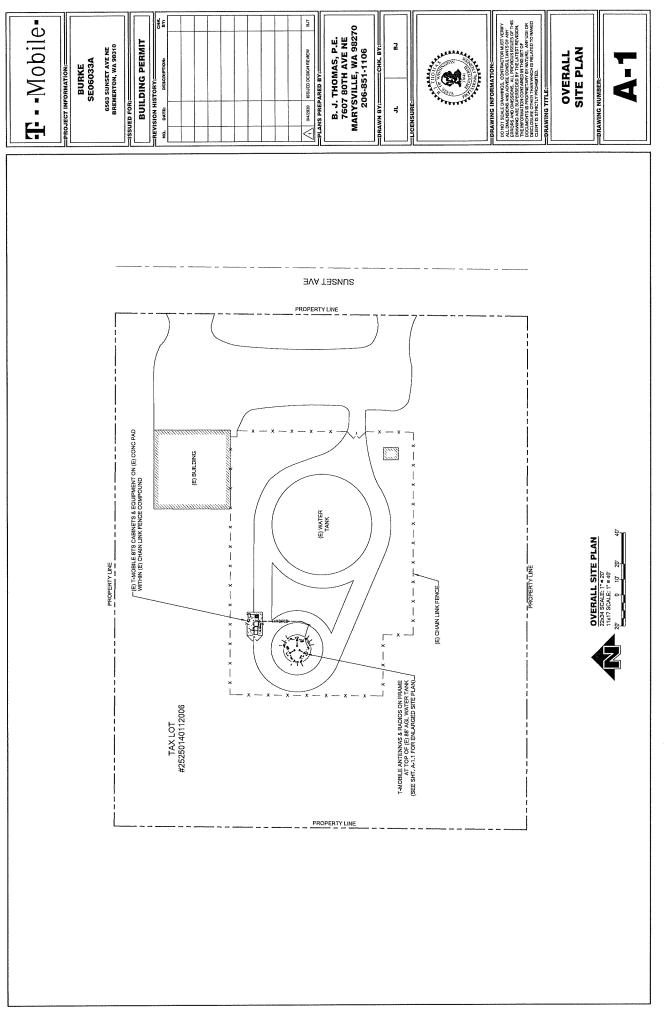
Job No.

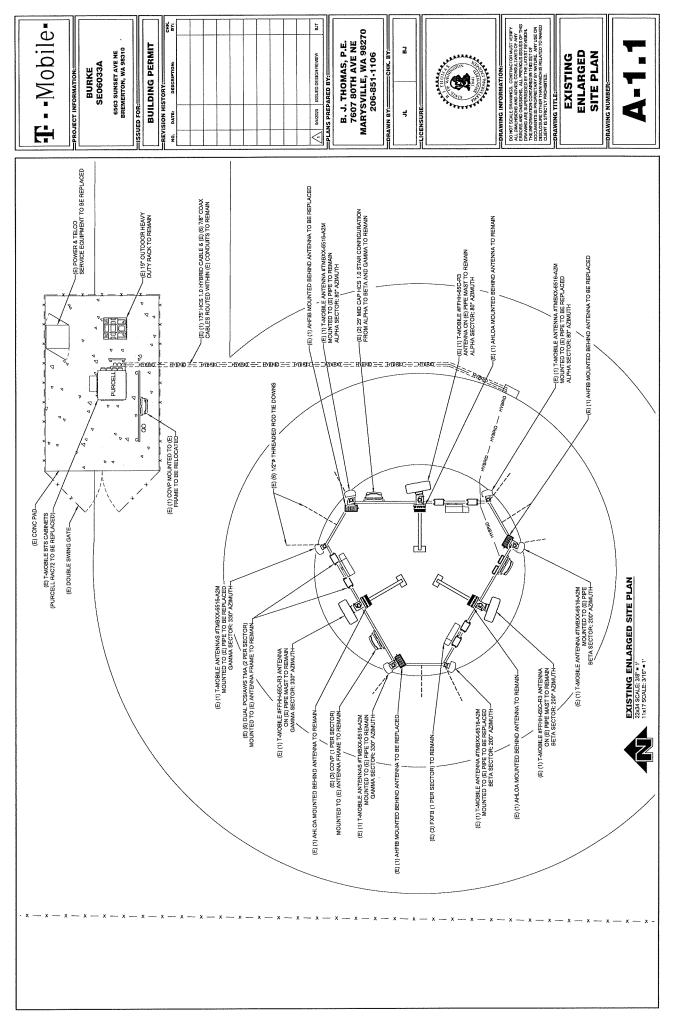
Sheet No.

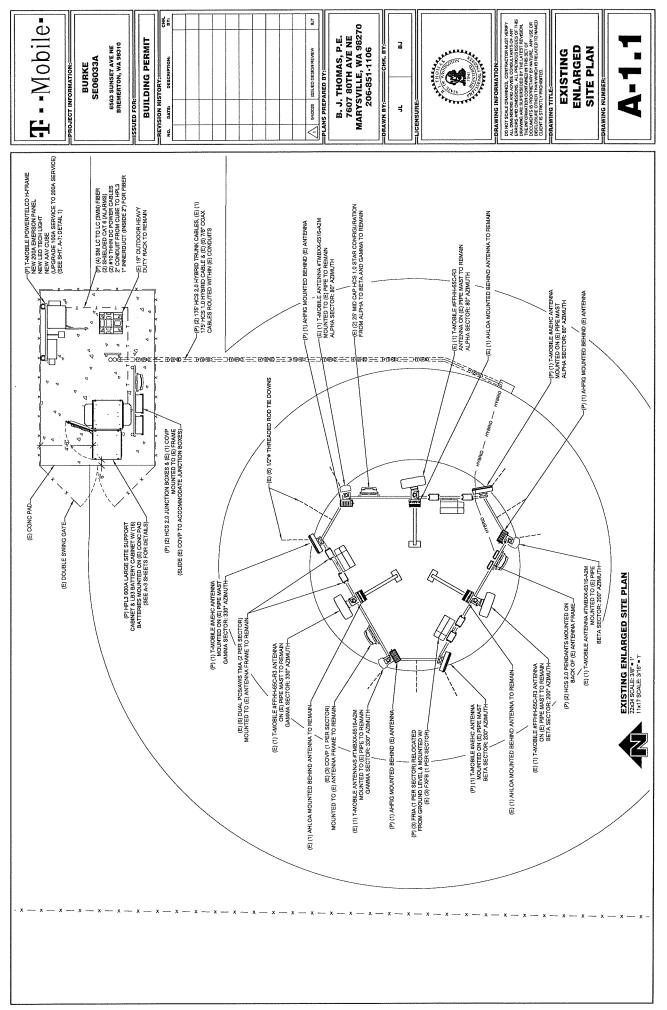
23

N.T.S.

20070.667

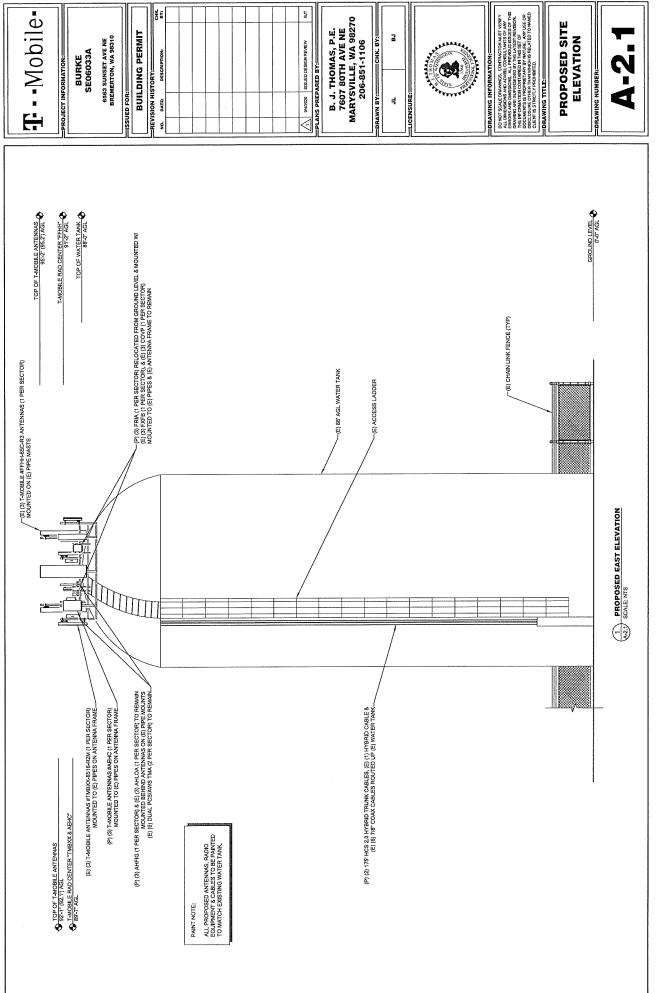

Profis					Prof	Profis Anchor 2.6.5
Page: 1 Project: 1 Sub-Project I Pos. No.: 9/18/2020 Date:			Pag Proj Sub Dat	ge: jject: ວ-Project I Pos. N te:	9/1	
	2 Proof I U	ilization (Governing Cases)		52		
	Loading	Proof	Load Load	Capacity	Bu / By [%]	Status
Kwik Bolt TZ - CS 3/8 (2)	Shear	Concrete breakout strength Concrete edge failure in direction v+	265	930 622	- / 43	ð ð
$h_{ol,acl} = 2.000 \text{ in.}, h_{nom} = 2.313 \text{ in.}$)				2	i
Carbon Steel .	Loading Combined tens		Bv 0.426		tilization β _{N,V} [%]	Status
2222201615/1/2017				5	P	ő
Design method ACI 318-14 / Mech.						
$e_b = 0.000$ in. (no stand-off); $t = 0.500$ in.						
$I_x \times I_y \times t = 2.000$ in. x 2.000 in. x 0.500 in.; (Recommended plate thickness: not calculated	Please consid	er all details and hints/warnings given in the detailed re	report			
no profile		Fastening meets	s the design	criterial		
cracked concrete, 2500, $f_c^{i} = 2500 \text{ psi; h} = 4.000 \text{ in.}$						
hammer drilled hole, Installation condition: Dry	4 Remarks	Your Cooperation Duties				
tension: condition B, shear: condition B; no supplemental splitting reinforcement present	Any and all in	ormation and data contained in the Software concern s	solely the use of Hilti	products and an	e based on the princi	oles, formulas
edge reinforcement: none or < No. 4 bar Tension load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.5.3 (a))	security regul compiled with the relevant Therefore, yo	by the user. All figures contained therein are average by the user. All figures contained therein are average lit product. The results of the calculations carried out bear the sole responsibility for the absence of errors, bear and sole arconstituit, for brained the account of the	nd operating, mounting a figures, and therefor t by means of the Soft the completeness ar	g and assembly i re use-specific te tware are based of the relevance	instructions, etc., that ests are to be conduct essentially on the dat of the data to be put	must be strictl ed prior to usir a you put in. in by you.
	and permits v and permits v	the applicable norms and permits, prior to using them for the applicable norms and permits, prior to using them for tithout any guarantee as to the absence of errors, the c	for your specific facility correctness and the re	y. The Software elevance of the r	expert, particularly w serves only as an air results or suitability fo	l to interpret n r a specific
z 298 # /2 = 299 #	 Poundation. You must shake regular backtor the AutoUdat by carying of programs, ari 	all necessary and reasonable steps to prevent or limit o of programs and data and. If applicable, carry out the te function of the Software, you must ensure that you a tranaula updates via the Hill Website. Hill will not be ing from a culpable breach of duy by you!	iit damage caused by e updates of the Softv are using the current. e liable for consequen	the Software. In ware offered by F and thus up-to-d nces, such as the	n particular, you must Hilti on a regular basi date version of the So e recovery of lost or d	arrange for th If you do no tware in each amaged data
299						
€ 270#12 = 26	s#					
∞ 255 ° ° ° 265 ′ ′ ′ ′						
	Profise Profise: Profise					Action Data Monthia Monthia Control Contro Contro Contero Contro Control Contro Control Control


Input data and results must be chocked for agreement with the existing conditions and for plausibility/ PROFIS Anchor (c) 2003-2009 Hillt AG, FL-9494 Schaan Hillt is a registered Trademark of Hillt AG, Schaan


×

Irput data and reults must be checked for agreement with the oxiding conditions and for plausbilly PROPIS Anchor (c) 2005-2009 will AG, FL-Jaket Schaam (will a a registered Trademark of Hull AG, Schaan

TMobile-	BULLDING PERMITON, WA 98310 ISSUED FOR		Image: Substant State Sta
T Mobile	BURKE BURKE 6563 SUNSET AVE NE BREMERTON, WA 98310 SITE NUMBER: SE06033A	LATITUDE 47° 37' 21.74" N (47.622706) LONGITUDE 122° 36' 30.69" W (-122.608525) PROJECT: ANCHOR/L600	



AY

A5

	T		BURKE	SE06033A	6563 SUNSET AVE NE	BREMERTON, WA 98310	ISSUED FOR	BUILDING PERMIT	NO. DATE: DESCRIPTION: BY							A DA42020 ISSUED DESIGN REVIEW BJT	PLANS PREPARED BY:	B. J. THOMAS, P.E.	7607 80TH AVE NE	206-851-1106	DRAWN BY:	3	 22100 HT				DRAWING INFORMATION:	DO NOT SCALE DRAWINGS, CONTRACTOR MUST VERIEY ALL DIMENSIONS AND ADVIDE CONSULTANTS OF ANY	ERRORS AND OMSSIONS. ALL PREVOUS ISJUES OF THIS DRAWING ARE SUPERSEDED BY THE LATEST REVERON THE INFORMATION CONTAVED IN THIS SET OF	DOCUMENTS IS PROPORETARY BY NATURE. ANY USE OR DISCLOBURE OTHER THUN WHICH IS RELATED TO NAMED CUENT IS STRACTLY PROHIBITED.	DRAWING TITLE:	RF DETAILS	DRAWING NIIMBER-		
	REDS PROJECT TYPE ANCHOR REDS VERSION 6, 87870707 10-40-53 DM	MTUS VENSION 0 - 0.202020 (0.4533 FW																																	
	ADDITIONAL EQUIPMENT	(1) AHLOA	(1) AHFIG (1) FXFB	(1) FRIA	(1) AHLOA	(1) AHFIG	(1) FXFB (1) E81A	(1) AHLOA	(1) AHFIG	(1) FXFB	(1) FRIA																								
	COAX CABLES		(2) 7/8" COAX CABLES			(2) 7/8" COAX CARLES			(2) 7/8" COAX	CABLES																									
	HYBRID CABLE LENGTH				(2) 175' HCS 2.0	CABLE & (1) 175	HCS 1.0 HYBRID CABLE																												
	RADIATION CENTER	83-8" AGL	91"3" AGL	89'-8" AGL	89**8* AGL	91'-3" AGL	89-8" AGL		91-3" AGL	83-8- YGF																									
G CHART	ELECTRICAL DOWNTILT		TBD			TBD			tap																										
FINAL" SITE LOADING CHART	MECHANICAL DOWNTILT		TBD			TBD			TBD																										
LEIN	AZIMUTH (TN)		90 .			200*			330*																										
	VENDOR	NOKIA	COMMSCOPE	ANDREW	NOKIA	COMMSCOPE	ANDREW	VINCIN	COMMSCOPE	ANDREW				200203500	r 5.9"		¥ 5.3° ≁						 R	1		SIDE	v								
	ANTENNA MODEL #	AEHC	FFHH-65C-R3	TMBXX-6516-A2M	AEHC	FFHH-65C-R3	TMBXX-6516-A2M	VEHC	FFHH-65C-R3	TMBXX-6516-A2M				AEHC 108 LBS	1100				وكمر				J.				21.5		ľ	}[TOP	1 AEHC DETAIL	/ SCALE: NTS		
	POSITION	-	7	9	-	2	3	-	- 74	e	_		MANUFACTUR	MODEL: WEIGHT:	DIMENSIONS:		21.5						 		FRONT							(-]	Ē		
	COLOR		RED			GREEN			BLUE		_				I		¥						 		ſ	-1	*	_ 5.9"	*						
	SECTOR		ALPHA			BETA			GAMMA									×	e			38.2"	 		¥										