CrystaLite Inc. 3307 Cedar ST Everett, WA 98201

SUBJ: THOMAS SUNROOM

26180 LEYMAN LN NE
KINGSTON, WA 98346

The project proposes constructing a custom built aluminum framed sunroom as shown in the attached details. The calculations demonstrate compliance to the 2015 International Building Code as adopted by the state of Washington.

As shown in the attached calculations the sunroom is designed for the following loading conditions:

Wind Loading: $\mathrm{V}_{\mathrm{ult}}=110 \mathrm{mph}$ Exposure C, $\mathrm{K}_{\mathrm{zt}}=1.0, \mathrm{I}=1$
Snow Loading: $\mathrm{pg}_{\mathrm{g}}=25$ psf roof snow load
Seismic Loading: $\mathrm{S}_{\mathrm{DS}}=0.847$

Calculation	Page
Loads	2
Rafters	3
Vertical Mullions	$4-5$
Headers	6
Ledger Mount	7
Glass	$8-10$

Edward C. Robison, P.E., S.E.

Sealed 21 April 2020

LOADING

Dead Loads:
Glass: 1 " insulating glass, $1 / 4$ " tempered glass, $1 / 2$ " airspace, $1 / 4$ " laminated tempered.
$\mathrm{D}=6.5 \mathrm{psf}$
Frame: 1.8 plf for rafters.

Wind Loads:
Calculate according to ASCE 7-10 Chapter 30 Figure 30.5-1
110 mph Zone 2 and wind area $=10$ S.F.
$\mathrm{P}_{\text {net } 30}=12.5 \mathrm{psf}$ or -34.7 psf
$\lambda=1.21$ (Exposure C and $\mathrm{Z}=15^{\prime}$)
Multiply by 0.6 to convert to ASD level loading
$\mathrm{W}=13.7 \mathrm{psf} * 1.21 * 0.6=9.95 \mathrm{psf}$ or $-37.9 \mathrm{psf} * 1.21 * 0.6=-27.5 \mathrm{psf}$
Wind zone 5 for walls:
$P_{\text {net } 30}=21.8 \mathrm{psf}$ or -29.1 psf
$\lambda=1.21$ (Exposure C and $\mathrm{Z}=15^{\prime}$)
Multiply by 0.6 to convert to ASD level loading
$\mathrm{W}=21.8 \mathrm{psf} * 1.21 * 0.6=15.8 \mathrm{psf}$ or $-29.1 \mathrm{psf}^{*} 1.21 * 0.6=-21.1 \mathrm{psf}$
Seismic Loads:
$\mathrm{F}_{\mathrm{P}}=\left[\left(0.4 * \mathrm{ap}_{\mathrm{P}} \mathrm{S}_{\mathrm{DS}} \mathrm{I}_{\mathrm{P}}\right) / \mathrm{R}_{\mathrm{P}}\right][1+2 \mathrm{z} / \mathrm{h}) \mathrm{W}_{\mathrm{P}}=[0.4 * 1.0 * 0.847 * 1.0 / 2.5](1+2)=0.407 \mathrm{~W}_{\mathrm{P}}$
For glass weight:
$\mathrm{E}=0.407 * 6.5 \mathrm{psf}=2.65 \mathrm{psf}$
Seismic loads are very low compared to wind loading and will not control any part of the design.
Snow Loads:
$\mathrm{p}=25 \mathrm{psf}$ on roof
Load combinations: ASCE 7-10 2.4.1
$\mathrm{D}+\mathrm{S}=6.5 \mathrm{psf}+25 \mathrm{psf}=31.5 \mathrm{psf}$
$\mathrm{D}+0.75 \mathrm{~S}+0.75 \mathrm{~W}=6.5 \mathrm{psf}+0.75 * 25 \mathrm{psf}+0.75 * 9.95 \mathrm{psf}=32.7 \mathrm{psf}$
$0.6 \mathrm{D}+\mathrm{W}=0.6 * 6.5 \mathrm{psf}-27.5 \mathrm{psf}=-23.6 \mathrm{psf}$

Edward C. Robison, P.E., S.E.
10012 Creviston DR NW

RAFTERS

Rafter Strength

$\mathrm{A}=2.143 \mathrm{in}^{2}$
$\mathrm{I}_{\mathrm{xx}}=4.466 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}=2.910 \mathrm{in}^{4}$
$\mathrm{S}_{\mathrm{xx}}=2.2277 \mathrm{in}^{3}$ Top
$\mathrm{S}_{\mathrm{xx}}=2.2383$ in 3 Bottom
$S_{\text {yy }}=1.7247 \mathrm{in}^{3}$
$\mathrm{r}_{\mathrm{x}}=1.4435$ "
$\mathrm{r}_{\mathrm{y}}=1.1653$ "
$\mathrm{J}=3.19 \mathrm{in}^{4}$
Allowable stresses:
ADM Table 2-24 6063-T6)

for $\mathrm{b} / \mathrm{t} \leq 23$ elements don't limit stress
b $\leq 23^{*} 0.125=2.875^{\prime \prime}>2.075^{\prime \prime}$
All flange elements okay
$\mathrm{F}_{\mathrm{t}}=15.2 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{bt}}=15.2 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{a}}=15.2 \mathrm{ksi}^{*} 2.2277 \mathrm{in}^{3}=33,800$ "\#

Rafter loading

Max span = 119"
Max tributary width $=(33.6875 "+29.6875 ") /(2 * 12)=2.64 \mathrm{ft}$
Max loading, $\mathrm{w}=2.64 \mathrm{ft} * 32.7 \mathrm{psf}=86.3 \mathrm{plf}$
Max moment, $\mathrm{M}=86.3$ plf $/ 12 * 119 " 2 / 8=12,700$ "\# < $33,800 " \#$ OK
Max deflection, $\Delta=5 * 86.3 \mathrm{plf} / 12 * 119 " 4 /\left(384 * 10.1 * 10^{6 *} 4.466 \mathrm{in}^{4}\right)=0.416$ "
$\mathrm{L} / \Delta=119 " / 0.416 "=286>175 \mathrm{OK}$
Rafter loading OK

Edward C. Robison, P.E., S.E.
10012 Creviston DR NW

VERTICAL MULLIONS
Part 4005
$\mathrm{A}=2.2845 \mathrm{in}^{2}$
$\mathrm{I}_{\mathrm{xx}}=4.6447 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}=1.7284 \mathrm{in}^{4}$
$\mathrm{S}_{\mathrm{xx}}=$ Varies
$\mathrm{Z}_{\mathrm{xx}}=3.071 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{yy}}=1.4552 \mathrm{in}^{3}$
$\mathrm{Z}_{\mathrm{yy}}=1.781 \mathrm{in}^{3}$
$\mathrm{r}_{\mathrm{x}}=1.4259$ "
$\mathrm{r}_{\mathrm{y}}=0.86981$ "
Allowable stresses:
ADM Table 2-24 6063-T6)

for $\mathrm{b} / \mathrm{t} \leq 23$ elements don't limit stress
No elements on this shape are susceptible to local buckling.

Allowable bending moment:
$\mathrm{M}_{\mathrm{a}, \mathrm{x}}=15.2 \mathrm{ksi}^{*} 3.071 \mathrm{in}^{3}=46,679 " \#$
$\mathrm{M}_{\mathrm{a}, \mathrm{y}}=15.2 \mathrm{ksi}^{*} 1.781 \mathrm{in}^{3}=27,071 " \#$
Allowable axial loads:
$\mathrm{T}_{\mathrm{a}}=15.2 \mathrm{ksi}^{*} 2.2845 \mathrm{in}^{2}=34.72 \mathrm{k}$
$\mathrm{kL} / \mathrm{r}=1 * 108 " / .86981=124$
$\mathrm{F}_{\mathrm{c}} / \Omega=14.2-.074 * 124=5.02 \mathrm{ksi}$
$\mathrm{C}_{\mathrm{a}}=5.02 \mathrm{ksi} * 2.2845 \mathrm{in}^{2}=11.5 \mathrm{k}$

Max compression $=86.3$ plf/12*119"/2 $=428 \# \ll 11.5 \mathrm{kips}$ OK
Max tributary width $=3.13^{\prime}$
$\mathrm{w}=3.13$ '*21.1psf = 66.0plf
$\mathrm{M}=66.0 \mathrm{plf} / 12 * 108$ " $2 / 8=8,020$ "\# < 46,679"\# OK
Vertical mullions provide stability to the skylight structure.
For calculating overall lateral load, subtract internal pressure from envelope wind pressures.
Internal pressure $=0.6 * 0.00256 * 1 * 0.85 * 0.85 * 110^{2} * 0.18=2.42 \mathrm{psf}$
Net horizontal wind pressure $=(15.8 \mathrm{psf}-2.42 \mathrm{psf})+(21.1 \mathrm{psf}-2.42 \mathrm{psf})=32.1 \mathrm{psf}$.
Shear on front wall $=32.1 \mathrm{psf} * 9.76^{\prime} / 2^{*} 9^{\prime} / 2=705 \#$
Other walls transfer shear to the structure through the ledger mount.
Weak axis moment $=705 \# * 71.5 " /(2 * 8)=3,150 " \#<27,070 " \#$ OK
Check moment resistance of sill and head connections with (2) $1 / 4$ " fasteners:
Bolt rupture $=0.0318 \mathrm{in}^{2 *} 0.6 * 75 \mathrm{ksi} / 2=716 \#$
Hole bearing $=2 * 0.25 " * 0.125 " * 30 \mathrm{ksi} / 1.95=962 \#$
Moment resistance $=2 * 716 \# * 2.375 "=3,400 " \#>3,150 " \#$ OK

Edward C. Robison, P.E., S.E.
10012 Creviston DR NW
Gig Harbor, WA 98329

Connection at head:

1/4" screws to shear block:
Allowable shear is controlled by bearing on aluminum.
$\mathrm{R}_{\mathrm{n}} / \Omega=2 * 0.25, * 0.12 * * 30 \mathrm{ksi} / 3=600 \#$ each Allowable shear $=4 * 600 \#=2,400 \#$
Max shear $=66.0$ plf $^{*} 9^{\prime} / 2=297 \#<2,400 \#$
OK
Max uplift $=23.6 \mathrm{psf} * 3.13^{\prime} * 10^{\prime} / 2=369 \#<$ 2,400\# OK

Check vertical screws to ledger plate plate:
Shear strength will be the same as the
 horizontal screws to the shear block.
$\mathrm{T}_{\mathrm{a}}=1.2 * 0.21 " * 0.12 " * 30 \mathrm{ksi} / 3=302$ \# Wach
Total, $\mathrm{T}_{\mathrm{a}}=2 * 302 \#=604 \#>369 \#$ OK
Sill Connection:
(2) $1 / 4$ " bolts in double shear.
$\mathrm{R}_{\mathrm{n}} / \Omega=2 * 0.25$ "*(2*0.12")*30ksi/1.95 $=1,850 \#>369 \#$ OK
Field fasteners:
Use \#10x2" wood screws
$\mathrm{V}=21.1 \mathrm{psf} * 9^{\prime} / 2=95.0 \mathrm{plf}$
$\mathrm{T}=95.0 \mathrm{plf} * 1 " / 2 "=47.5 \mathrm{plf}$
$p=2 "-0.69 "=1.31 "$
Z' $=1.6^{*} 133 \#^{*} 1.31 " /\left(10^{*} 0.19 "\right)=147 \#$
W'p $=1.6^{*} 135 \mathrm{pli*} 1.31 "=283 \#$
Check pullover assuming a countersunk head:
$\mathrm{R}_{\mathrm{n}} \Omega=\left(0.27+1.45^{*} 0.19{ }^{\prime \prime} /\right.$
0.12 ")*0.19"*0.125"*25ksi/3 = 508\#

Find max spacing:
Shear strength controls spacing, $S_{a}=147 \# /$
 $95.0 \mathrm{plf}^{*} 12=18$ " O.C.

Edward C. Robison, P.E., S.E.
10012 Creviston DR NW

HEADERS

Mullion Name:
PART 4005

$\mathrm{Ix}(\mathrm{in} \wedge 4)$	$\mathrm{Sx}(\mathrm{in} 3)$	b / t	
	1.728		1.455

ly (in4)	Sy (in3)	b / t
	4.645	3.071

Glass WT (psf)	Supported glass height (ft)	$\Delta \mathrm{a}$ (in)	$\begin{array}{\|l} \hline \text { Max Span } \\ \text { (in) } \end{array}$	E (x10^6 psi)	Bearing Block Load (lbs)
3.5	4	0.125	77	10.1	44.91666667

	Span (in)	Δ actual	Error
Max Span for L/4 (in)	106.9	0.12497057	$-2.943 \mathrm{E}-05$
Max span for L/8 (in)	125.0	0.12497057	$-2.943 \mathrm{E}-05$
Max a for max span (in)	40.2	0.04880696	-0.076193

Mx (in-lbs)	864.6458333

Assuming Maximum Triangular Wind Load:	
P (psf)	21.1
Peak load w (plf)	135.3916667
Total load W (lbs)	434.3815972
My (in-lbs)	5574.563831
Δ	0.327243455
L/ Δ	235.2988236

Allowable Moments:	
$\mathrm{F} / \Omega, \mathrm{x}$	15.2
$\mathrm{~F} / \Omega, \mathrm{y}$	15.2
Ma, x ($\mathrm{In}-\mathrm{lbs}$)	22116
Ma, y (in-lbs)	46679.2

Stress Check	
$M x$	Pass
$M y$	Pass
Biaxial	Pass

Edward C. Robison, P.E., S.E.

CrystaLite Inc - C-10812 Custom Sunroom

LEDGER MOUNT

Vertical shear $=32.7 \mathrm{psf}^{*} * 10^{\prime} / 2=164 \mathrm{plf}$
Horizontal shear $=32.1 \mathrm{psf}^{*}\left(9.76^{\prime} / 2^{*} 9^{\prime} / 2\right) / 18.0^{\prime}$

$$
=39.2 \mathrm{plf}
$$

Tension $=21.1 \mathrm{psf}^{*} 6^{\prime} / 2=63.3 \mathrm{plf}$

Check bending in ledge from tension loads:
$\mathrm{M}=4.75$ "*63.3" $=301$ " $\# / \mathrm{ft}$
$\mathrm{M}_{\mathrm{a}}=0.125$ "2* $12 " / 4 * 15.2 \mathrm{ksi}=713 " \# / \mathrm{ft}>301 " \# / \mathrm{ft}$
OK

Check loading on wood screw:
Assume \#10x2" wood screws

$\mathrm{p}=2 "-0.12 "=1.88^{\prime \prime}$
Z' $=1.6^{*} 133 \#^{*} 1.88^{\prime \prime} /\left(10^{*} 0.19^{\prime \prime}\right)=211 \#$
W'p $=1.6^{*} 135$ pli* 1.88 " $=406 \#$
Allowable spacing is controlled by shear loading:
$\mathrm{D}+.75 \mathrm{~W}+0.75 \mathrm{~S}$ controls shear loading.
$\mathrm{V}_{\text {net }}=\left(164^{2}+\left(0.75^{*} 39.2\right)^{2}\right)^{1 / 2}=167 \mathrm{plf}$
Max spacing $=211 \# / 167$ plf* $12=15 "$ O.C.

Edward C. Robison, P.E., S.E.
10012 Creviston DR NW

GLASS STRENGTH

Check glass based on ASTM E 1300-12a
1 " Insulating glass at roof panels
$1 / 4$ " tempered monolithic $-1 / 2$ " air space $-1 / 4$ " tempered laminated glass
Long duration load $=25 \mathrm{psf}+6.5 \mathrm{psf}=31.5 \mathrm{psf}$
Short duration load $=32.7 \mathrm{psf}$
Check 32.7 psf as a long duration load. If it passes then long duration and short duration loads are OK.

GTF $=2.85$
$\mathrm{LS}_{1}=1.20$ (Monolithic pane)
$\mathrm{LS}_{2}=5.96$ (Laminated pane)
The monolithic pane is much stiffer and will control allowable loading.
Dimensions: 34 "x119"

Long Dimension (in.)

$\mathrm{NFL}_{1}=1.5 * 20.9 \mathrm{psf}=31.4 \mathrm{psf}$
$\mathrm{LR}_{1}=31.4 \mathrm{psf} * 2.85 * 1.20=107 \mathrm{psf}>31.4 \mathrm{psf}$ OK
Estimate deflection
$\mathrm{PA}^{2}=31.4 \mathrm{psf} /(1000 * 1.20) *\left(34{ }^{\prime} * 119 " / 144\right)^{2}=20.7 \mathrm{kip}-\mathrm{ft}^{2}$
$\mathrm{AR}=119 " / 34 "=3.5$

$\Delta=0.32^{\prime \prime}<3 / 4$ " OK
$\mathrm{L} / \Delta=34 " / 0.32 "=106>60 \mathrm{OK}$

1 " Insulating glass at wall panels
$1 / 8^{\prime \prime}$ tempered monolithic $-3 / 4$ " air space $-1 / 8$ " tempered monolithic glass Wind pressure $=21.1 \mathrm{psf}$
$\mathrm{GTF}=3.6$
$\mathrm{LR}=2$
Max dimensions: 35 "x108"
(Calculations continued on the following page)

Edward C. Robison, P.E., S.E.

$\mathrm{NFL}=20.9 * 0.6=12.5 \mathrm{psf}$
$\mathrm{LR}=12.5 \mathrm{psf} * 2 * 3.6=90.3 \mathrm{psf}>21.1 \mathrm{psf}$ OK
Estimate deflection
PA $^{2}=21.1 \mathrm{psf} /(1000 * 2) *(35 " * 92 " / 144)^{2}=5.28 \mathrm{kip}^{2}-\mathrm{ft}^{2}$
$A R=92^{\prime \prime} / 35^{\prime \prime}=2.6$
Long Dimension (in.)
$\Delta=0.56 ">3 / 4$ " OK $\mathrm{L} / \Delta=35 " / 0.56 "=63>$ 60 OK

Edward C. Robison, P.E., S.E.
10012 Creviston DR NW
Gig Harbor, WA 98329

