structural engineering

Reviewed for code compliance

THE SAMPLE RESIDENCE Gretchen Massee, Architect Remodel STRUCTURAL ENGINEERING CALCULATIONS REPORT

2015 International Building Code
Seismic Zone D2, Importance II, $\mathrm{S}_{\mathrm{s}}=1.63 \mathrm{~g}$
110 mph Wind ($\mathrm{V}_{\text {utt }}$), Exposure B, $\mathrm{k}_{\text {zT }}=1.25$
Floor Live Load - 40 psf, Sleeping 30 psf
Ground Snow Load, 30psf , $C_{D}=1.15$
Soil Bearing Pressures -1500 psf (prescriptive)

Site Address:
8582 Long Lake Rd. SE.
Port Orchard

1 I AV V $\begin{aligned} & \text { Terry A. Nettles, P.E. Project } \\ & \text { Consulting Engineer }\end{aligned} \quad$ SAMPLE RESIDENCE Sheet 1 of 13 Consulting Engineer 7777 92nd Street NW Gig Harbor, WA 98332 VOICE \& FAX (253) 858-7777

Job No. 40068 Date $5 / 31 / 20$

Search Information

Address: $\quad 8582$ Long Lake Rd SE, Port Orchard, WA 98367, USA

Hazard Type: Seismic
Reference ASCE7-16

Document:
Risk Category: II
Site Class: D-default

Basic Parameters

Name	Value	Description
S_{S}	1.627	MOE $_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.559	MCE $_{\mathrm{R}}$ ground motion (period=1.0s)
S_{MS}	1.953	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	${ }^{*}$ null	Site-modified spectral acceleration value
S_{DS}	1.302	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	*null	Numeric seismic design value at 1.0 s SA

* See Section 11.4.8
*Additional Information

Name	Value	Description
CDC	* null	Seismic design category
Fa_{a}	1.2	Site amplification factor at 0.2 s
$\mathrm{~F}_{\mathrm{V}}$	${ }^{*}$ null	Site amplification factor at 1.0 s
CR $_{\mathrm{S}}$	0.9	Coefficient of risk (0.2s)
CR $_{1}$	0.882	Coefficient of risk (1.0s)
PGA	0.693	MCE $_{\mathrm{G}}$ peak ground acceleration
PGA	1.2	Site amplification factor at PGA
PGA	0.832	Site modified peak ground acceleration

The Sample Residence
Lateral Forces Analysis
Exposure B
Lateral Forces Analysis in accordance with the IBC 2015, chapter 16
This lateral forces analysis is being performed for a site with 25 psf ground snow loads, 85 mph wind speeds $\left(\mathrm{K}_{z t}=1.15\right)$, with an Exposure B terrain condition. Seismic analysis shall use a site class D soil with site coefficient F_{s} for a site spectral response of $S_{s}=1.627$ from ATC Worldwide Seismic "DesignMaps" Web, ASCE 7-16, Seismic Category Use Group 1

Wind Alternate All Heights Method per IBC Section 1609.6.3. Exposure B, 85 mph (ASD) wind

$$
\begin{aligned}
& P_{\text {net }}=q_{s} K_{z} C_{\text {net }}\left[I k_{z t}\right] \\
& q_{s}=22.5 \mathrm{psf} \quad K_{z 25}=0.70 \\
& C_{\text {net }}=0.73 \text { used for all (roofs and walls) } \\
& k_{z t}=1.25 \quad I=1.0 \\
& \text { for } h \leq 30^{\prime} \quad \boldsymbol{P}_{\text {net }}=14.9 \text { psf minimum on walls } \\
& \boldsymbol{P}_{\text {net }}=\text { use } 8 \text { psf minimum on sloping roof } \\
& \mathrm{Ff} / \mathrm{b}_{1}=74^{\prime}\left[\left(4.5^{\prime}\right) 8 \mathrm{psf}+\left(3^{\prime}\right) 14.9 \mathrm{psf}\right]=5972 \mathrm{lb} \\
& \mathrm{Fs} / \mathrm{s}_{1}=38^{\prime}\left[\left(4.5^{\prime}\right) 8 \mathrm{psf}+\left(3^{\prime}\right) 14.9 \mathrm{psf}\right]=3067 \mathrm{lb} \\
& \mathrm{Ff} / \mathrm{b}_{0}=54^{\prime}\left(8^{\prime}\right) 14.9 \mathrm{psf}+\mathrm{Ff} / \mathrm{b}_{1}=12409 \mathrm{lb} \\
& \mathrm{Fs} / \mathrm{s}_{0}=18^{\prime}\left(8^{\prime}\right) 14.9 \mathrm{psf}+0.35 \mathrm{Fs} / \mathrm{sl}=3219 \mathrm{lb} \text { to rear wall }
\end{aligned}
$$

GRAVITY LOADS
roof (composition)
floors (gathering)
floors (sleeping)
exterior decks framed
walls (8-ft height)

DL (psf) LL (psf) TOTAL (psf)

20	25	45 psf
12	40	52 psf
12	30	
10	60	70 psf
10	---	90 pf

SEISMIC FORCES

This building is 3-stories or less of plywood shearwall bracing The seismic base shear $V=\mathrm{C}_{s} \mathrm{~W}$
where $\left.C_{s}=\left[S_{D S} / R / I_{e}\right)\right] W$
and from ASCE 7 Table 12.2-1, Section A 15, Light Wood Frame, $R=6.5$
from ATC Seismic Hazards Map, $S_{s}=1.627$
$S_{D S}=1.302$
$R \quad=\quad 6.5$ for plywood sheathed framed walls For working stress analysis, use 0.7 E for seismic $\mathrm{W}=$ dead load weight of building
so Veq $=[(1.302) / 6.5] \mathrm{W}(.7)=0.140 \mathrm{~W}$ for framed wall portions

The Sample Residence

 Lateral Forces Analysis Exposure BWhere W is the gross weight of the part of the structure above the base of the shear resisting element. Therefore the floor weight does not add to the wall shears of the floor being calculated but only to the mass contributing to shears of the next story's bracing walls below it when it is calculated.

Dead Load + Live Load (floors) + Seismic (snow is not included when < 30 psf) the net areas that can be loaded.

Calculate the maximum gross weight of the building using the sum of the net areas that can be loaded.

SUMMARY OF CONTROLLING SHEARS

FLOOR 1

Maximum Ff/b$=$	9702	Seismic controls
Maximum Fs/s $=$	9702	Seismic controls
Maximum Ff/b $=$	16239	Seismic controls
Maximum Fs/s $=$	16239	Seismic controls

For Maximum Base Shears

| $\mathrm{Veq}=0.14\left(\mathrm{Wf}_{0}\right)+\mathrm{Veq}_{1}=$ | 16239 lb |
| :--- | :--- | :--- |
| wind $=58^{\prime}\left(5^{\prime}\right) 14.9 \mathrm{psf}+\mathrm{Ff} / \mathrm{b}_{0}=$ | 16672 lb CONTROLS |

Anchor Bolt Requirements (Cumulative)
Total foundation base length $=$
254 ft
By using the allowable compressive stress of the bolt face against the wood with $4 / 3$ stress increase for short term loads, and assuming a Hem-fir species material with FC $=500$ psi, the $4 / 3(500)=667$ psi, then for
$1 / 2^{\prime \prime}$ cia. bolts in $1 \frac{1}{2} 2^{\prime \prime}$ mudsills, gives a $500 \mathrm{lb} /$ bolt capacity, and for
$5 / 8^{\prime \prime}$ dial. bolts in $11^{\prime \prime}$ mudsills, gives a $625 \mathrm{lb} /$ bolt capacity

Vase $=\quad 16672 \mathrm{lb}$, so minimum number of bolts req'd $=\mathrm{V} / 500=33$

$$
\text { or }=V / 625=27
$$

$$
\begin{array}{lc}
254 / 33= & 8 \mathrm{fto.c.} \text { for } 1 / 2^{\prime \prime} \text { bolts } \\
254 / 27= & 10 \mathrm{ft} \text { oc. for } 5 / 8^{\prime \prime} \text { bolts }
\end{array}
$$

Use minimum ${ }^{1} / 2^{\prime \prime} \Phi$ anchor bolts @ 6^{\prime} oc. with $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4$ " plate washers (See Shear wall schedule for local wall conditions requiring closer spacing.)
${ }^{\prime}|\nabla \Delta V| \begin{aligned} & \text { Terr A. Nettles, P.E. } \\ & \text { Consulting Engineer }\end{aligned}$ 7777 92nd Street NW Gig Harbor, WA 98332 VOICE \& FAX (253) 858-7777

Project SAMPLE RESIDENCE
\qquad
Subject \qquad Sheet \qquad of 13 Job No. 40068 Date \qquad

MAIN FLOOR

BASEMENT

${ }^{1} \nabla \Delta \vee \vee |$| Terry A. Nettles, P.E. |
| :--- | :--- | Consulting Engineer

\qquad SAMPLE RESIDENCE Sheet 6 of 13 Job No. 40068 Date $5 / 31 / 20$

MAIN FLOOR
$F_{\text {FIG }}=9700^{\#}($ SEISMIC $) / 5=1940^{\circ}$ TO EACH BRACE LINE A) THRU (E) bracing walls

$$
f_{v(A)}=\frac{1940^{\#}}{\left(3^{\prime}+17.5^{\prime}+3^{\prime}\right)}=83 \mathrm{p} 1 \mathrm{~A} \longrightarrow \text { existing adequate }
$$

(5d/7) $f_{v(5)}=\frac{1940^{\#}}{\left(5^{\prime}+15^{\prime}\right)}=97 \mathrm{plf} \rightarrow$ existing exterior ok

$$
f_{v(c)}=\frac{1940^{\#}}{14^{1}}=139 \text { plf } \rightarrow \text { existing is adequate }
$$

(8d/6) (5d/7) $f_{V(3)}=\frac{1940^{\#}}{\left(7^{\prime}+11^{\prime}\right)}=108$ pit $\rightarrow 2 / 16$ OSB exterior wed e $C_{0}^{\prime \prime}$ oc 1/2" Gus interior w/5d $@ T^{\prime \prime}$ a

$$
f_{v(E)}=\frac{1940^{\#}}{24^{1}}=81 \mathrm{pl} \rightarrow \text { existing is adequate }
$$

$F_{S / S}=9700^{\#}($ SEISMIC $) / 4=2425^{\#}$ to (F) THKV ($)$
BRACING WAWS

 $710^{\prime \prime}$ oS B w/ $\operatorname{sd} C 0^{\prime \prime}$ exterior

$$
f_{v(\#)}=\frac{2425^{\#}}{\left(4^{\prime}+4^{\prime}+5^{\prime}+14^{\prime}\right)}=90 \mathrm{pH}
$$

bo
(8d/6) $f_{v(1)}=\frac{2425^{\#}}{\left(5^{\prime}+8^{\prime}+4^{\prime}+12^{\prime}+12^{\prime}\right)}=59 p 1 f \rightarrow 7 / 16^{\prime \prime}$ os B w/od ce $6^{\prime \prime}$ oc
${ }^{\prime} \nabla \Delta \vee \vee \left\lvert\, \begin{aligned} & \text { Terry A. Nettles, P.E. }\end{aligned}\right.$ Consulting Engineer

Project GAMPLE RESIDENCE Sheet \qquad ク of 13 Job No. . 40068 $5 / 31 / 20$ Subject ROOF FRAMING

Date VOICE \& FAX (253) 858-7777 \qquad
\qquad

TRUSSES e $2^{\prime} 0 . c \times 40 \mathrm{pst}=80 \mathrm{plf}$

$$
R=\left(\frac{24^{\prime}}{2}\right) 80=960^{\#}
$$

DETERMINE MEMbER FGRCES a JOInt LOADS
FIND ab

$$
\Sigma F_{y}=0=960^{\#}-240^{4}-\frac{1}{3,16} a b \quad a b=\left[\frac{960-240}{1 / 3,16}\right]=2275^{\#}
$$

joint b

$$
\begin{gathered}
\sum F_{y}=\frac{1}{3.16}\left(2275^{\#}\right)-480^{\#}-\frac{1}{3.16} b c+\frac{1}{1.41} b f=0 \\
720-480-\frac{b c}{3.16}+\frac{b f}{1.41}=0 \\
240-\frac{b c}{3.16}+\frac{b f}{1.41}=0 \\
\frac{b c}{3.16}=240+\frac{b f}{1.41} \rightarrow b c=758+2.24 b f \\
\sum F_{x}=0= \\
\left(\frac{3}{3.16}\right) 2275-\frac{1}{1.41} b f-\frac{3}{3.16} b c \\
2160-\frac{b f}{1.41}-\frac{3}{3.16}(758+2.24 b f)=0 \\
2160=\frac{b f}{1.41}+720+2.13 b f \\
1440=2.84 b f \\
b f=508
\end{gathered}
$$

\qquad Job No. 40068
7777 92nd Street NW Gig Harbor, WA 98332 \qquad
\qquad
Find af

$$
\begin{aligned}
F_{x}=0= & \frac{3}{3,16} F_{a b}-F_{a f} \\
& F_{a f}=\frac{3}{3,16}\left(2275^{\#}\right)=2160^{\#}
\end{aligned}
$$

Joint f

$$
\begin{aligned}
\sum F_{y}=0=-\frac{1}{1,41} F_{b f} & +\frac{1}{1.41} F_{\text {of }} \\
& F_{b f}=F_{c f}=508^{\#} \text { tensmm }
\end{aligned}
$$

Find fg
af $\sum F_{x}=0=-F_{a f}=\frac{F_{b f}}{1,41}+\frac{F_{c f}}{1,41}-F_{f}$

$$
\begin{aligned}
& -2635-\frac{508}{1.41}+\frac{F_{c f}}{1.41}-F_{f g} \\
& 2995=\frac{F_{c} f}{1.41}-F_{f g}
\end{aligned}
$$

$$
F_{f g}=2995-\frac{508}{1,41}=2488{ }^{\#}
$$

USE V/2"CDX PLYWOOD GUSSETS BOTH SIDES FOR ALL JOINTS
GTAPVE of 14 ga - $13 / \mathrm{K}^{\prime \prime}$ wire staples $7 / 6{ }^{\prime \prime}$ crown Valued e 53 \#/staple
JOHN T a $2275 / 53=44$ staples
$508 \pi / 53=10$ staples $2160 \frac{\# / 53}{}=42$ to bot chard

$$
\begin{array}{ll}
b \quad 508 / 53= & 10 \text { staples } \\
c & 1895 / 53= \\
d=b \\
d= & =10 \\
e & =a \\
f & 508,53=10 \\
g= & =f
\end{array}
$$

ANY BOT CHORD SPLICE USE 50 MIN 3 Yo SPACING
${ }^{\prime} \nabla \Delta \wedge$, $\begin{aligned} & \text { Terry A. Nettles, P.E. } \\ & \text { Consulting Engineer }\end{aligned}$
7777 92nd Street NW Gig Harbor, WA 98332 VOICE \& FAX (253) 858-7777
\qquad
Subject \qquad
\qquad $5 / 31 / 20$ Job No. 40066^{g} Date Sheet 9 of 13
\qquad

DETAIL X-BRACE

SEE PLANS FOR LOCATION

1. Designated shear wall below which is perpendicular to direction of roof framing.
2. 2×6 X-brace frame from top plate of wall to roof diaphragm.
3. Set angle of braces no less than 30° and no greater than 45° off horizontal.
4. Braces may be set up to 10° out of vertical plane to avoid truss webs.
5. Provide (4) $16 d$ nails at crossing.
6. Install a 2×4 block at ends of braces to next roof framing member with (3) 16d.
7. Place Simpson LU26 flat on top plate to receive base of braces over wall.
8. Connect celling joist or truss bottom chord to wall with Hl at brace locations.
9. Typical ceiling gypsum board sheathing installation.
10. Rafters or roof trusses.
11. Install (3) 20d nails through truss or rafters into end of each X-brace.
12. Gable end wall sheathing where occurs.
13. Typical roof sheathing nail at 4 -inches o.c. to blocks at brace ends.
${ }^{\prime} \nabla \Delta \underset{\Delta}{ } \mathrm{V} \left\lvert\, \begin{aligned} & \text { Terry A. Nettles, P.E. } \\ & \text { Consulting Engineer }\end{aligned}\right.$
7777 92nd Street NW Gig Harbor, WA 98332 VOICE \& FAX (253) 858-7777

Project \qquad Sample Residence Sheet \qquad 12 of 13 Job No. \qquad 40068
\qquad

PROVIDE INTERIOR SHEAR WALL CONNECTION TO ROOF SYSTEM WHEN WALL is parallel to truseres

Permit Number: 20-03436

SHEATHING REQUIREMENTS FOR THE SAMPLE RESIDENCE REMODEL

Structural sheathing is required to provide adequate lateral bracing of the building system and as diaphragms of the roof and floor structures to transfer loads to lateral bracing elements and is specified by the following notes:

Assumptions of existing construction are that all exterior walls are presently sheathed with a recognized rated sheathing panel and attached to wood framing in accordance with the standard nailing schedule of the International Building Code. For any changes to the exterior walls and roofs use a minimum thickness $7 / 16$ " APA rated sheathing panel for all exterior faces. For these panels, there shall be one row of nails at each plate and at least one row into each rim joist. Spacing of these nails in these rows shall be consistent with the panel designation nailings as defined below and indicated on the drawings. At the foundation line there shall be a row of nails continuous at 4" oc. minimum. Sole plate nailing of all wood panel sheathed walls is specified below.

Any revised portions of the main floor shall use sheathing panels of a minimum 23/32" APA Sturd-IFloor, tongue and groove edged, rated panels likewise alternated by $1 / 2$ of a panel length in layout and glued and nailed with 10d galvanized or ring sharked nails at 6 " oc all edges, 12 " in the field. Edges of floor diaphragms shall be nailed into solid blocking which fills the joist space in line with and directly above the bracing wall elements below. Current rafters and trusses shall be connected to the top plates with Simpson type H1 hurricane clips, OR SDWC 15600 screws, OR 6" TimberLOK screws at maximum 24 " oc. unless indicated otherwise on the plans. Modification to interrupted rafters and or ceiling joists through the central portion of the house where existing bearing walls are being removed shall be converted to site built structural trusses using the existing rafters and joists supplemented with webs and gussets as shown on the drawings.

Nailing and sheathing requirements for the new construction are specified on the drawings with the fastening indicated by spacing on the edges and along interior lines (through the field) in inches by the following symbols.

Use a $7 / 16$ "minimum thickness APA rated sheathing panel on one side with 8 d common or galvanized box nails @ 6" o.c. edges and 12" through the field. Nail sole plates into solid material (blocking or joists) with 16d @ 12" oc. Staples may be used, however, they shall be a 14 gauge $1-3 / 4$ " galvanized wire staple with crown placed parallel to the panel edge and spaced at $6^{\prime \prime}$ oc. edges /9" oc. field. Blocking is required at all unsupported edges of the sheathing. Provide $1 / 2^{\prime \prime}$ diameter $\times 10$-inch anchor bolts at 6 -ft oc. maximum.

Sheath wall both sides with $1 / 2$ " gypsum wallboard and nail edges supported by studs and plates with 5 d cooler nails spaced at 7 inches on center. Nail sole plate to solid blocking or joists in the floor below using 16d nails spaced at 12 -inches on center.

